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1 Introduction

Industries where some feature of demand or supply may allow a firm that achieves an initial

advantage to attain a position of lasting market dominance often attract the attention of

policy-makers. For example, digital services with network effects have been the focus of

recent debates about whether new approaches to antitrust are required, and manufacturing

industries with large learning-by-doing effects, such as the manufacture of semiconductors,

solar panels and aircraft, have been affected by industrial, trade and national security poli-

cies. Even when government objectives are not economic, an understanding of dynamic

competition is required to understand what the effects of policies will be.

Almost all existing theoretical or empirical models of dynamic competition, whether

in industrial organization (for example, Fudenberg and Tirole (1983), Cabral and Riordan

(1994), Benkard (2000), Besanko, Doraszelski, Kryukov, and Satterthwaite (2010), Besanko,

Doraszelski, and Kryukov (2014)) or international trade (Dasgupta and Stiglitz (1988), Leahy

and Neary (1999),Neary and Leahy (2000)) assume sellers unilaterally set prices or quantities.

While sellers in these industries are often larger than buyers, in reality there is often some

negotiation over prices especially for industrial products. A second recent literature has

shown that allowing for bargaining over prices can matter for our understanding of both

horizontal (Ho and Lee (2017), Gowrisankaran, Nevo, and Town (2015)) and vertical issues

(Crawford, Lee, Whinston, and Yurukoglu (2018)) in static oligopoly models, using the

so-called “Nash-in-Nash” framework (Collard-Wexler, Gowrisankaran, and Lee (2019)). In

this framework, a bargaining power parameter captures how the surplus that a bilateral

agreement will generate will be split.

We ask whether moving away from the price-setting assumption will significantly af-

fect outcomes and policy conclusions in a model of dynamic competition.1 Specifically, we

extend the well-known duopoly seller “learning-by-doing (LBD) and forgetting” computa-

tional model of Besanko, Doraszelski, Kryukov, and Satterthwaite (2010) (BDKS) to allow

1We have not identified other attempts to directly address this question. Lee and Fong (2013) consider a
dynamic network formation game with bargaining, and use it to consider the effects of hypothetical hospital
mergers. In contrast to our paper, the dynamics in Lee and Fong (2013) result from stochastic changes in
the network links, whereas, in our paper, dynamics result from supply-side primitives, and cost states which
are directly affected by sales reflecting the prices that are negotiated.
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for bargaining.

Assuming that there is an atomistic buyer every period, an assumption that we maintain,

and that sellers set prices, BDKS compute the Markov Perfect Nash equilibria that exist for

different parameters. They show that equilibria often exist where firms price aggressively

when they are symmetric and that this can lead to sustained asymmetric market structures

with firms at different levels of know-how. These equilibria often co-exist with equilibria

where price competition is more accommodative and firms are likely to move down their

cost curves roughly in parallel.

We replace the BDKS stage game where sellers set prices with a particular form of Nash-

in-Nash bargaining over prices. The Nash bargaining power parameter allows us to vary

how much bargaining power sellers have, nesting the BDKS assumption as well as the social

planner problem as special cases. We consider what happens with no policies, and under a

range of stylized policies, including optimal subsidy/tax schemes for suppliers, and policies

that might be used to try to limit the dominance of the market leader.

In the BDKS model, it is the expectation of future profits which drives sellers to price

dynamically. It is therefore not surprising that reallocating bargaining power, changing

suppliers’ share of current and future surplus, will affect prices and welfare. However, what

is less intuitive, and might be missed by just trying to extend intuition about how bargaining

affects outcomes in static settings, are the ways in which changes in bargaining power interact

with the myopic behavior of buyers, and how this feeds back into the dynamic incentives of

sellers, prices and market structure.

For example, when the margin of a leader is restricted by giving buyers a limited amount

of bargaining power, the leader will become more likely to make sales and leadership will

tend to last longer, potentially making it relatively more attractive for a firm to establish

a lead. We find that even small shifts away from the price-setting assumption can have

very significant qualitative effects. This motivates an ongoing research agenda where we will

be looking at a number of empirical applications using models that are more tailored the

realities of particular industries than the model that we use here.2 Our policy analysis also

2As an example of the type of setting which we are considering, consider the analysis of aircraft manufac-
turer mergers considered by An and Zhao (2019), who suggest that some mergers will be efficiency-increasing
because they will increase know-how, moving the merged firm efficiently down its cost curve. This conclusion
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considers some new questions, such as the design of optimal subsidies and whether it could

be advantageous to wait until the leader has made some progress down its cost curve before

introducing policies to encourage competition.3

We also make two more methodological-related contributions. First, solving even stylized

models, like the BDKS model, involves significant computation. For example, with M =

30 know-how states for each firm, BDKS’s formulation of the symmetric equilibrium has

M2 = 900 equations for seller values and M2 = 900 first-order conditions for prices. We

develop an alternative formulation where the equilibria are characterized only by buyer choice

probabilities in each state. With BDKS’s no outside good assumption, the system reduces

to a total of M(M−1)
2

equations and unknowns. This alternative formulation also allows

for a straightforward calculation of the subsidies required to implement the social planner

optimum.

Our second (and related) methodological contribution concerns multiple equilibria. Cabral

and Riordan (1994), BDKS and Besanko, Doraszelski, and Kryukov (2014) (BDK) document

the common existence of multiple equilibria in the type of infinite-horizon dynamic model

that we use, reflecting how different expectations about future play can be internally con-

sistent. Given that multiple equilibria can create issues for estimation and interpretation,

one reaction has been to design models where uniqueness is guaranteed (e.g., Abbring and

Campbell (2010) and Abbring, Campbell, Tilly, and Yang (2018)), for example by imposing

symmetry and eliminating seller-specific payoff shocks. This approach can be very useful for

studying the effects of aggregate shocks, but it cannot be used to address whether one firm

may become dominant. We find that (absent distorting policies) multiple equilibria in the

BDKS model are eliminated once buyers have even quite limited bargaining power. In the

M = 30 model our conclusions are based on the type of homotopy approach used by BDKS,

which is not guaranteed to find all of equilibria even when a thorough search is conducted.

may be viewed as consistent with our typical finding (in a model that is much more stylized than their model)
that when firms set prices equilibria tend to involve learning that it is too slow. However, when bargaining
power is equally split between buyers and sellers we often find that learning is too fast and there is too much
concentration from a social perspective. In this case, one might view a merger that increases the leader’s
advantage more skeptically.

3The answer is that we find this can raise efficiency when sellers have all or almost all the bargaining
power, but that this is because this tends to increase the asymmetry between firms relative to an industry
where a policy is never imposed.
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However, we show that we find the same result in an M = 3 model where our reformulation

of the equilibrium conditions allows us to identify equilibria using a different approach.4

We note that Besanko, Doraszelski, and Kryukov (2014), Besanko, Doraszelski, and

Kryukov (2019a), Besanko, Doraszelski, and Kryukov (2019b), and Sweeting, Jia, Hui, and

Yao (2022) (SJHY) consider a closely-related model, which we will refer to as “BDK”. The

BDK model also assumes at most two active firms, but differs from the BDKS model in

allowing buyers to have an outside option, and for sellers to enter or exit endogenously.

Unlike in BDKS, there is no know-how depreciation.

We will analyze some the policies considered by BDK and Besanko, Doraszelski, and

Kryukov (2019b) in our counterfactuals, but we deliberately prefer to use the BDKS model

in this paper for three reasons. First, in a model with fixed costs (or entry costs and scrap

values), transferring bargaining power to buyers may tend to cause market structure to move

towards monopoly and the industry to then disappear entirely. While this effect is certainly

potentially important, it is distinct from the effects of bargaining on dynamic incentives, and

the relative market position of leading and laggard suppliers, that we want to consider in this

paper. Second, as discussed in SJHY, competitive dynamics in the BDKmodel often have the

form that, in all, or almost all equilibria, firms will remain in the industry forever once they

have made one sale, at which point pricing becomes more accommodative. In contrast, in the

BDKS model, the possibility that know-how depreciates can lead to aggressive competition

in a wide range of different states.5 Third, while our reformulation would also reduce the

number of equations in the BDK model, the existence of an outside good would mean that

the number would only fall from 2M2 to M2, rather than M(M−1)
2

.6

The rest of the paper is structured as follows. Section 2 outlines the model, together

with several outcome measures. Section 3 explains the alternative ways of formulating the

equations that define a symmetric Markov Perfect Nash equilibrium. Section 4 uses the

4The M = 3 model also allows us to develop intuition for the effects that we see in the full model in
a transparent way. However, we caution that it is unclear exactly how the technology parameters in the
M = 3 model should be mapped into the M = 30 model.

5In reality, firms can be accused of anticompetitive behavior because their policies keep rivals, who have
had some success, from expanding even if they are not excluded entirely. In this sense, the BDKS model
may reflect some enforcement-relevant situations better than the BDK model.

6Appendix F shows that assuming an outside good that is as attractive/unattractive as BDK assume
does not change outcomes when τ = 0 significantly.
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M = 3 version of the model to illustrate how bargaining affects incentives and market

outcomes, and eliminates multiplicity. Section 5 uses the full model, showing that the effects

on outcomes can be substantial, and sensitive to low τ , in this more realistic set-up. Section

6 presents the results of policy counterfactuals, where we primarily focus on a single set

of parameters. Section 7 concludes. The Appendices contain methodological details, some

(limited) theoretical proofs and additional results that support those reported in the text.

2 Model

In this section we present the model, which follows BDKS except for generalizing the stage

game where prices are determined and developing an extension, with a monopsonist long-

lived buyer, to represent the social planner problem. Readers should consult BDKS for

additional motivation.

2.1 States and Costs.

There is an infinite horizon, discrete time, discrete state game. The common discount factor

is β = 1
1.05

. There are two ex-ante symmetric but differentiated sellers (i = 1, 2), whose

marginal costs depend on their past sales. Specifically, each seller has a commonly observed

state variable, ei = 1, ...,M , that tracks its “know-how”.7 The state of the industry is

e = (e1, e2).

A firm’s cost of producing a unit of output is c(ei) = κρlog2(min(ei,m)). ρ ∈ [0, 1] is known

as the “progress ratio”, and a lower number reflects stronger learning economies. When

ρ = 1, marginal costs are κ for all ei. Our two model variants involve setting either m = 3

and M = 3, or m = 15 and M = 30 (same as BDKS).8

Dynamics arise from the evolution of the know-how states. As described below, in each

period one unit will be purchased from one of the sellers. The state of seller firm i evolves,

7Asker, Fershtman, Jeon, and Pakes (2020), Sweeting, Roberts, and Gedge (2020) and Sweeting, Tao,
and Yao (2023) consider dynamic models where serially correlated state variables are private information.

8M = 3 is the smallest number where the leader can have both a “small” and a “large” advantage.
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except at the boundaries of the state space, according to

ei,t+1 = ei,t + qi,t − fi,t (1)

where qi,t is equal to one if firm i makes the sale, and fi,t is equal to one (0 otherwise)

with probability ∆(ei) = 1 − (1 − δ)ei with δ ∈ [0, 1).9 The probability of forgetting (∆) is

therefore increasing in both δ and ei. Equation (1) implies that a firm that makes a sale will

either have the same or one more unit of know-how in the next period, whereas a firm that

does not make a sale will have either the same or less know-how.

Following BDKS, every period there is a buyer that purchases a single unit from one

of the firms. Each period the chosen buyer receives flow indirect utility v − pi + σεi if it

buys from seller i, where pi is the price paid, and σ parameterizes the degree of product

differentiation. The εis are private information Type I extreme value payoff shocks, which

are i.i.d. across buyers, sellers and periods, and do not depend on a buyer’s past purchases.

We will assume that σ = 1, except in Appendix F where we briefly discuss allowing for an

outside option and varying differentiation.

Bargaining. In BDKS the sellers compete for the buyer’s business by simultaneously set-

ting prices. We now explain how we relax this assumption to allow for bargaining, nesting

the BDKS assumption as a special case.

We assume that the buyer sends separate agents to each seller, before the buyer knows

the realization of its εs. Each agent-seller pair negotiate the price at which a transaction will

happen if the buyer chooses to purchase from that seller, with no purchase possible if a price

is not agreed. We make the Nash-in-Nash assumption (Collard-Wexler, Gowrisankaran, and

Lee (2019)), so that each buyer agent-seller pair takes the price agreed by the other agent-

seller pair as given. The buyer’s “bargaining power” is equal to a parameter τ . Once both

negotiations are completed, the buyer observes its εs and chooses which seller to purchase

from given the agreed prices.

There are two benefits of this formulation. First, because information is symmetric

9At the boundaries of the state space, the evolution is necessarily restricted. For example, when ei,t = 1
and qi,t = 0, firm i cannot forget (fi,t = 0), and when ei,t = M and qi,t = 1, firm i has to forget (fi,t = 1).
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during negotiations, agreements will always be reached in equilibrium and outcomes will be

consistent with BDKS’s assumption of trade in every period, even if transaction prices are

different.10 Second, as described below, outcomes equivalent to (i) sellers simultaneously

setting prices, and (ii) prices always equalling current production costs are nested as special

cases, with τ = 0 and τ = 1 respectively.

In our paper we will look at what happens as τ varies from 0 to 1. However, if τ ̸= 0,

what values of τ are “reasonable” and how might this affect the interpretation of our results?

τ = 0.5, so that buyers and sellers have equal bargaining power, is often assumed when

bargaining weights cannot be empirically identified. One interpretation of our results is that

strategies and outcomes when τ = 0.5 are often not close to the averages of the outcomes

when τ = 0 and τ = 1, whereas, for example, this is usually the case for prices in a static

model where outside options are fixed.

However, estimated τs often range quite widely even across similar types of firms (Gren-

nan (2013)), and an alternative view would be that, in many settings where LBD is impor-

tant, sellers are larger than buyers and an economist might believe that this would give sellers

“most of the bargaining power”. In this case, the economist might think that a price-setting

assumption is a sensible, simplifying assumption. Our finding that outcomes often change

very quickly when one moves away from τ = 0 suggests that this type of logic should be

viewed skeptically, and that, to the extent buyer bargaining power eliminates multiplicity, it

may not really simplify the analysis at all.

Social Planner Problem. SJHY consider a model where buyers are forward-looking and

expect to capture some share (bp) of future buyer surplus. While our analysis of competition

in this paper assumes bp = 0 (i.e., that each buyer is short-lived/atomistic), we solve the

social planner problem by assuming bp = 1 and τ = 1, so that a monopsonist repeat buyer

makes choices that maximize expected total surplus.

10The key feature is that, during bargaining, the buyer’s agent and the seller have symmetric information
about the realization of the εs, which guarantees that prices will be agreed in equilibrium, allowing trade
to happen. With asymmetric information during negotiation, there would be some probability that both
negotiations would fail and no purchase would happen, creating a potential non-trivial difference to BDKS’s
model.
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3 Equilibrium

This section presents two formulations of the equations characterizing the equilibrium of the

model. We then discuss how we find equilibria, and the principal measures that we use to

describe equilibrium outcomes.

The equilibrium concept is symmetric and stationary Markov Perfect Nash equilibrium

(MPNE, Maskin and Tirole (2001), Ericson and Pakes (1995), Pakes and McGuire (1994)).

3.1 Formulation of Equilibrium Conditions for Prices and Values.

An equilibrium can be expressed as a vector of p∗(e) (negotiated prices), V S∗(e) (beginning

of period seller values) and, in the social planner problem, V B∗(e) (value of the monopsonist

buyer) that solve the following equations, where symmetry implies that we only need to solve

for prices and seller values for firm 1 (i.e., p∗2(e1, e2) = p∗1(e2, e1), V S
∗
2(e1, e2) = V S∗

1(e2, e1)).

We solve for the buyer’s value in states where e1 ≥ e2 (i.e., V B∗(e1, e2) = V B∗(e2, e1)).

Beginning of period value for firm 1 (V S):

V S∗
1(e)−D∗

1(e)(p
∗
1 (e)− c(e1))−

∑
k=1,2

D∗
k(e)µ

S
1,k(e) = 0, (2)

where µS
1,k(e), is seller 1’s continuation value when the buyer chooses to buy from seller k,

µS
1,k(e) = β

∑
∀e′1,t+1|e1,t

∑
∀e′2,t+1|e2,t

V S∗
1(e

′
1,t+1, e

′
2,t+1) Pr(e

′
1,t+1|e1,t, k) Pr(e′2,t+1|e2,t, k),

and Pr(e′i,t+1|ei,t, k) is the probability that i’s state transitions from ei,t to e′i,t+1 when a

purchase is made from k (qk,t = 1) given the forgetting probabilities. The probability that

the chosen buyer purchases from seller k, Dk(e), given negotiated prices, is

Dk(e) =
exp

(
v−pk(e)+µB

k (e)

σ

)
exp

(
v−p1(e)+µB

1 (e)

σ

)
+ exp

(
v−p2(e)+µB

2 (e)

σ

) ,
where µB

k (e), the buyer continuation value when it purchases from k, is defined below. D∗
k(e)
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is this demand function evaluated at equilibrium prices and values.

Beginning of period buyer value (V B) (for social planner problem):

Based on a model where there is a pool of symmetric potential buyers who expect to be

chosen to be the active buyer with probability bp in any period

V B∗(e)− bpσ log

(∑
k=1,2

exp

(
v − p∗k(e) + µB

k (e)

σ

))
− (1− bp)

∑
k=1,2

D∗
k(e)µ

B
k (e) = 0 (3)

where

µB
k (e) = β

∑
∀e′1,t+1|e1,t

∑
∀e′2,t+1|e2,t

V B∗(e′1,t+1, e
′
2,t+1) Pr(e

′
1,t+1|e1,t, k) Pr(e′2,t+1|e2,t, k).

In the social planner problem bp = 1. Otherwise bp, and all V Bs and µB
k s, equal zero for the

analysis in this paper.

Negotiated prices (p): the assumed simultaneous Nash-in-Nash structure of bargaining im-

plies that the equilibrium price negotiated between the buyer and seller 1, p∗1(e), will be the

solution to the following maximization problem where p2 is treated as fixed.

p∗1(e) = argmax
p1

(CS(p1, p2, e)− CS(p2, e))
τ × ...(

D1(e)(µ
S
1,1(e) + p1 − c(e1)) + (1−D1(e))µ

S
1,2(e)− µS

1,2(e)
)(1−τ)

where CS(p1, p2, e) = σ log
(∑

k=1,2 exp
(

v−pk(e)+µB
k (e)

σ

))
(i.e., the expected future surplus

of the buyer when it is able to choose from both firms) and CS(p2, e) = v − p2(e) + µB
2 (e),

which is the buyer’s expected surplus when the negotiation with seller 1 fails, and it has to

buy from seller 2.

p∗1(e) is therefore the solution to the first-order condition

τ
∂CS(p∗1(e), p2, e)

∂p1

(
D∗

1(e)(µ
S
1,1(e) + p∗1(e)− c(e1)) + (1−D∗

1(e))µ
S
1,2(e)− µS

1,2(e)
)
+ ...

(1− τ) (CS(p∗1(e), p2, e)− CS(p2, e))

(
D∗

1(e) +
∂D∗

1(e)

∂p1

(
p∗1(e)− c(e1) + µS

1,1(e)− µS
1,2(e)

))
= 0,

(4)
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where
∂CS(p∗1(e),p2,e)

∂p1
= −D∗

1(e) and
∂D∗

1(e)

∂p1
= −D∗

1(e)(1−D∗
1(e))

σ
. Algebraic manipulation shows

that this can be simplified to

−τD∗
1(e)(p

∗
1(e)− ĉ1(e)) + (1− τ) [σ − (1−D∗

1(e))(p
∗
1(e)− ĉ1(e))] log

1

1−D∗
1(e)

= 0 (5)

where ĉ1(e) = c(e1)− (µS
1,1(e)− µS

1,2(e)) is firm 1’s “effective” marginal cost of a sale which

accounts for dynamic incentives which reflect future profits in different states and the ex-

pected evolution of the industry. µS
1,1 and µ

S
1,2 are endogenous and we will see that they can

be quite sensitive to small shifts in τ .

When τ = 0 (seller has all of the bargaining power), the FOC reduces to the pricing first-

order condition in BDKS. When τ = 1, p∗1(e) = c(e1) in all states, implying that V S∗ = 0.

However, atomistic buyer choices can cause purchases to be socially inefficient when they

pay current production costs, which do not reflect the future social benefits from buying

from a particular provider.

Note that in our model, the buyer’s agent and the seller agree on the price at which trade

may happen, not that trade will happen, and that the agreed price affects the probability

that a supplier makes a sale.11 A price increase reduces an agreement’s expected surplus, as

it is more likely the other seller will make the sale. This effect will tend to lower the markup

for a given τ .

3.2 Formulation of Equilibrium Conditions in Terms of Buyer
Choice Probabilities.

Assuming bp = 0, the previous formulation gives 2×M2 equations (18 for M = 3 and 1800

for M = 30). However, it can be convenient to use an alternative formulation which exploits

the fact that buyer and seller values and prices can be written in terms of buyer choice

probabilities alone.

11In the Nash-in-Nash bargaining applications cited in Lee, Whinston, and Yurukoglu (2021) there is
usually a mass of consumers (e.g., a mass of customers for health insurance) so that a known quantity (e.g.,
patients using a particular hospital) will be transacted at the agreed prices.
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Note that

D1(e) =
exp

(
v−p1(e)+µB

1 (e)

σ

)
∑

k=1,2 exp
(

v−pk(e)+µB
k (e)

σ

) =
1

1 + exp
(

p1(e)−p2(e)+µB
2 (e)−µB

1 (e)

σ

) .
so we can formulate the equations that we solve as

σ log

(
1

D1(e)
− 1

)
− p1(e) + p2(e) + µB

1 (e)− µB
2 (e) = 0. (6)

The key to reformulating the problem is to note that prices and values can be expressed

in terms of the buyer choice probabilities D1 and parameters.

From (5) a seller’s markup over its effective marginal cost can expressed solely in terms

of buyer choice probabilities

p1(e)− ĉ1(e) = Φ(D1(e)) =
(1− τ)σ log 1

1−D1(e)

τD1(e) + (1− τ)(1−D1(e)) log
1

1−D1(e)

. (7)

Denote the stacked vector of these markups Φ(D1).

We can stack the equations for seller values and write them as

VS1 = D1 ◦Φ(D1) + βQ2VS1, (8)

where Qk is the state transition matrix conditional on the buyer purchasing from seller

k (which only depends on technology, and not endogenous variables), and ◦ denotes the

element-wise product between two vectors.

ĉ1 = c1 − β(Q1 −Q2)VS1 (9)

and

VS1 = (I− βQ2)
−1 [D1 ◦Φ(D1)]. (10)

so that

p1 = Φ(D1) + c1 − β(Q1 −Q2)(I− βQ2)
−1[D1 ◦Φ(D1)]. (11)
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If bp > 0, then we also need to substitute in for the choice-specific buyer continuation

values. µB
1 − µB

2 = β(Q1 −Q2)V
B, and

VB = bp

(
I− β

∑
k=1,2

Dk ◦Qk

)−1 ∑
k=1,2

[
Dk ◦

(
σ log

1

Dk

+ v − pk

)]
, (12)

and we can then use (11) to substitute in for prices.12

This gives us M2 equations in D1. However, imposing symmetry with no outside good,

so that D1(e, e) = D2(e, e) =
1
2
and using D2(e, e

′) = 1−D1(e, e
′) = 1−D2(e

′, e) = D1(e
′, e),

the problem is reduced to M(M−1)
2

equations and unknowns, i.e., 435 equations for M = 30

and 3 for M = 3.

3.3 Unique Equilibria.

One can show the following results.

Proposition 1 1. If τ = 1, prices will equal marginal production costs in all states, for

all bp, ρ and δ.

2. when bp = 0, there will be a unique symmetric MPNE when

(a) δ = 0 for all ρ and τ (a result that also holds for intermediate values of bp not

considered in this paper).

(b) τ = 1 for all ρ and δ.

Proof. See Appendix A.

The social planner problem will also have a unique solution. These uniqueness results

are not surprising. For example, when δ = 0, backwards induction can be applied, as the

game must end up in state (M,M) and then stay there forever, and movements through the

state space are unidirectional. When buyers are atomistic (completely static), backwards

induction can then be applied to prove uniqueness. However, outside of these extreme cases,

there may be multiple equilibria. Indeed, the existence of multiplicity has been emphasized

12Note that log
∑

k=1,2 exp
(

v−pk(e)+µB
k (e)

σ

)
=
∑

k=1,2 Dk(e) log
(

1
Dk(e)

)
+
∑

k=1,2 Dk(e)
v−pk(e)+µB

k

σ .
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in much of the existing literature on dynamic competition (BDKS, Cabral and Riordan

(1994)).

3.4 Methods for Finding Equilibria and their Classification

When δ > 0, it is always possible for the game to return to states with lower know-how, and

backwards induction cannot be used. For a given set of parameters we can find an equilibrium

by solving the system of equations (whether defined in terms of prices and values or choice

probabilities) that defines an equilibrium or by using the iterative algorithm of Pakes and

McGuire (1994).

In order to enumerate the set of equilibria in the M = 30 model, and to examine what

happens to equilibrium strategies and outcomes when we change parameters including τ ,

we use BDKS’s approach of numerical homotopies. Homotopies trace the equilibrium corre-

spondence through the strategy and value space, as a single parameter is varied, using the

matrix generalization of the implicit function theorem. A homotopy starts from an equilib-

rium calculated either by solving the equilibrium equations for a given set of parameters, or

as the output from a different homotopy. We will label a homotopy that varies the parameter

α as a “α-homotopy”.

The homotopy approach can identify equilibria that, because of the failure of local sta-

bility conditions, cannot be found using the Pakes-McGuire algorithm (unless one started

exactly at the equilibrium). However, there is no guarantee that repeated application of

homotopies will identify all equilibria and in practice it is quite common that individual

homotopies may stall (taking a series of tiny steps).

Our M = 30 results are therefore based on an assumption that our implementation

(described in Appendix B.1), which runs homotopies in different directions and varying

different parameters in turn, is effective. In the context of the BDK model, SJHY show

that the results of using this implementation are consistent with the results from a novel

backwards induction algorithm that they can show whether particular types of equilibria

(defined by the exit and re-entry strategies of the firms) exist. While our experience makes

us confident that our broad conclusions from using homotopies are correct, we acknowledge

that we could be missing some equilibria for given parameters.
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For this reason, we use an alternative approach, detailed in Appendix B.2, for finding

equilibria whenM = 3. This approach uses the reformulated equilibrium conditions. Solving

for D1(2, 3) given values of D1(1, 2) and D1(1, 3), the problem then amounts to searching for

the solutions to just two continuous nonlinear equations on the unit square.13

3.5 Useful Measures.

Given equilibrium strategies, we can calculate a variety of outcome measures. We assume

that the industry is in state (1,1) in t = 1.

Concentration and Prices. Following BDKS, a summary statistic for expected market

structure in period t is HHI t where

HHI t =
∑
∀e

µt(e)HHI(e)

and

HHI(e) =
∑
k=1,2

(
D∗

k(e)

D∗
1(e) +D∗

2(e)

)2

.

µt(e) is the probability that a game will be in state e after t periods. Given two firms, the

minimum value of HHI t is 0.5. We can define measures of expected prices after t periods,

P t in a similar way. P PDV is the expected present discounted value of prices paid.

In the M = 30 model, we will focus primarily on HHI32 as a measure of medium-run

market structure, and we will use HHI200, and occasionally HHI1000, as measures of long-

run market structure. With a discount factor of 1
1.05

, 200 periods is already far into the

future from a social planner’s perspective. In the M = 3 model, we will focus on HHI4 and

HHI32.

We note that one should not assume that the distribution of states will have converged to

its steady state distribution after 1,000 periods in theM = 30 model, as for many parameters

13The procedure involves verifying that there is only one solution for D1(2, 3) given the choice probabilities
in other states. We have found that the equation for D1(2, 3) is monotonic in this variable for all of the
parameters we have looked at, so that there is a unique solution, although we have not been able to prove
monotonicity.
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the second firm may only move down its cost curve after a low probability sequence of

favorable shocks.14

Surplus. As we assume a purchase is always made, v does not affect equilibrium strategies

and choices, and is, in this sense, arbitrary. We therefore measure both consumer and total

surplus ignoring the vs, so that our reported values may be negative. Our measures of

expected consumer surplus (CS, CSt or CSPDV ) are the expected value of the buyers’ εs

associated with their purchases (E(ε)) less the expected price, even though this measure will

(almost always) be negative. We define producer surplus, PSt or PSPDV , as the expected

price less production costs. Total surplus will be defined as E(ε) for purchased units less

production costs (PCt or PCPDV ) (or, equivalently, CS + PS). Potentially one could be

interested in all of the alternative welfare measures at different points in time. For simplicity,

we will emphasize TSPDV (efficiency) as our primary welfare measure.

4 Analysis of a Model with M = 3

In this section we analyze the M = 3 model. We would not suggest that the M = 3 model

can provide a useful representation of any real-world industry, but it is computationally

convenient, allows the reader to see what happens to all strategies when any parameter

changes, and we can identify multiplicity without using homotopies. We first analyze how

multiplicity varies with τ across the (ρ, δ) parameter space, before using an example to

illustrate how reallocating bargaining power affects the strategies, incentives and the various

distortions in the model. We also consider the design of the optimal subsidy scheme.

Bargaining and the Existence of Multiple Equilibria. Although we do not regard

the existence of multiple equilibria as being the primary topic of our investigation, the

existing literature that has assumed price-setting has emphasized that multiple equilibria

14This is true even in the social planner solution. For example, for the illustrative parameters that we
will focus on, once two firms get to state (30,30), the assumed forgetting technology implies that they are
(virtually) certain to remain at the bottom of their cost curves forever, so that HHIt will converge eventually
to 0.5. However, the social planner’s optimal strategy is to get one seller down its cost curve quickly, and
then waiting for a low probability sequence of favorable preference shocks before investing in creating a
second low cost producer. As a result, HHIt only converges to 0.5 at around 4,000 periods.
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are generic in this type of model. As there is a unique equilibrium when τ = 1, we expect

that equilibria will be unique for τ close to 1, but, a priori, it is unclear whether we should

expect moving from τ = 0 to intermediate values will eliminate or increase multiplicity. If it

caused multiplicity to proliferate then it may be very difficult to present a clear picture about

how bargaining power affects outcomes. Equilibria are identified using the (non-homotopy)

method described in Appendix B.2.15

Figure 1 shows how many equilibria exist for τ = 0, 0.05, 0.1 and 0.15 for a grid of ρ

and δ values. As we always identify uniqueness for τ ≥ 0.2 or δ ≥ 0.5 we do not present

these results. The red areas indicate (ρ, δ) parameters where we identify multiplicity for the

indicated τ and, for τ ≥ 0.05, we also identify multiplicity for τ − 0.05. There are small sets

of parameters, marked in green, where there is multiplicity for τ but not for τ − 0.05. The

maximum number of equilibria we identify is 3. The general pattern is that increasing τ

eliminates multiplicity, and that multiplicity is eliminated entirely well before τ reaches 0.5.

The multiplicity that does exist is associated with strong LBD effects (the first sale lowers

costs by at least 40%) and a moderate degree of know-how depreciation. For example, if

δ = 0.1, the probability that a firm in state e = m = M experiences depreciation is 0.27.

Interestingly, the δs that support multiplicity in the M = 30, m = 15 model have forgetting

probabilities in state m greater than approximately 0.26, although in that model multiplicity

can be sustained when this probability rises as high as 0.8.

Polar Cases for Example (ρ, δ). Our primary goal is to understand whether, and why,

the re-allocation of bargaining power can have significant effects on market structure and

efficiency/welfare. This requires understanding the inefficiencies that exist in the model. We

use parameters ρ = 0.3 and δ = 0.03, which support a unique equilibrium for all τ considered

above, to illustrate.

The left hand panel of Table 1 shows prices, sale probabilities, state distributions and

welfare outcomes for the social planner problem. We solve the social planner case using the

device of a long-lived buyer who faces prices equal to production costs, although the social

planner could, of course, set different prices to transfer surplus in any way that it wants.

15We are currently confirming whether homotopies identify the multiplicity that our non-homotopy method
finds.
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Figure 1: Multiplicity of Equilibria in the M = m = 3 Model. White = unique equilibrium.
Green = multiple equilibria for τ and uniqueness for τ − 0.05. Red = multiple equilibria for
τ and (for τ ≥ 0.05) also for τ − 0.05. Grid of 0.01 steps from 0 to 1 for ρ, grid of 0.005
steps from 0 to 1 for δ and grid of 0.05 steps for τ . A unique equilibirum is identified for all
τ ≥ 0.2 for all (ρ, δ) and for all δ ≥ 0.5 for all (ρ, τ).
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The table reports the probability distribution of states after 4 periods (when the state (3,3)

cannot be reached) and after 32 states, as well as the PDV of CS, TS and PS, and the

expected values of these welfare measures in the 4th and 32nd periods. The other panels

show equilibria when τ = 0 and τ = 1.

Sale probabilities (reported by the probability that the laggard makes the sale, D1) will

always be 0.5 in symmetric states, so everything relevant about endogenous differences in the

state transitions is captured by the bottom-left three boxes. In the social planner’s problem

(left panel), the leader is much more likely to make the sale in state (1,2) (D1(1, 2) =

0.076) and in state (1,3) (D1(1, 3) = 0.102), but if the game has moved to (2,3), the social

planner is more likely to have the laggard produce (D1(2, 3) = 0.575 > 0.5), despite its

cost-disadvantage. This outcome reflects the future advantage to having a second supplier

with the lowest possible cost, and the relatively low probability (with δ = 0.03) that the

leader’s know-how depreciates to 2 when it does not make a sale. As reflected by the state

probability distributions, the industry is likely to evolve with one firm moving very quickly

down its cost curve, with the second firm moving with a delay. With M = 3, the social

planner will likely have two firms in highest know-how state by the 32nd period.

Now consider panel (c) with τ = 1. With no dynamics or seller investments, marginal

cost pricing would lead to efficient purchase choices. However, in our dynamic model, even

though the total number of sales is unaffected by τ , inefficiencies will arise with marginal

cost pricing because myopic buyers will ignore how their choices affect future costs. This

could result in buyers being too likely to buy from a laggard (raising the expected lowest cost

of future production) or being too likely to buy from the leader (raising the probability that

future buyers will buy from a supplier with a lower ε). For our parameters, the cost advantage

of a leader is large, and the second type of inefficiency dominates, so that, compared with the

social planner solution, the leader is more likely to make the sale in all asymmetric states,

and the industry is very likely to be in state (1,3) after 4 and 32 periods. In fact, (1,3)

will also be the state after 1,000 periods with probability 0.99 (even if (3,3) is reached at

some point, the industry is likely to move to (1,3) once a firm that does not make a sale

experiences depreciation). Note, however, that because the know-how state of the firm that

sells in the fourth period is more likely to be low, expected fourth period TS is higher than
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in the social planner solution.

Now consider panel (b) with τ = 0 (corresponding to the BDKS assumptions). In

this case, prices do not equal marginal costs, and relative prices, which will reflect seller’s

opportunity costs and markups, may tend to offset or exacerbate inefficiencies arising from

the behavior of myopic buyers. The leader will not account for benefits of lowering its costs

that are captured by buyers, and it will not account for how its sales reduce the expected

future profits of its rival. For our parameters, the laggard is significantly more likely to

make sales in states (1,2) and (1,3) than the social planner would choose. In state (2,3),

the laggard is more likely to make a sale than the leader, despite its cost disadvantage, even

though it is slightly less likely to make a sale than the social planner would choose. These

differences imply that the industry state will likely evolve quite quickly to both firms being

in state e = 2 or e = 3 , with HHI4 and HHI32 equal to 0.565 and 0.502. These compare

to values of 0.999 and 0.998 respectively when τ = 1, and 0.770 and 0.528 respectively for

the social planner.

Varying τ for Example (ρ, δ). Figure 2(a) and (b) shows how welfare and concentration

measures vary as τ changes from 0 to 1. As the levels of market concentration in the social

planner’s solution is between the levels when τ = 0 and τ = 1, it is not surprising that

TSPDV is non-monotonic in τ (it is maximized for τ ≈ 0.3). CSPDV has a local maximum

around τ ≈ 0.35 and a global maximum when τ = 1. PSPDV declines monotonically in τ .

Bargaining and Dynamic Incentives. So far the analysis has emphasized how changing

τ affects buyer purchase probabilities and seller margins. The directional effects are largely

intuitive. However, there are also effects on sellers’ dynamic incentives that are more subtle,

but which play important roles in determining how quickly changes in τ affect outcomes.

Moving bargaining power to buyers will, holding the distribution of future states and

opportunity costs fixed, tend to lower a leader’s value and so tend to reduce the incentives

to become a leader or preserve a lead. On the other hand, lowering markups may make

it more likely that leaders make sales. If so, leadership may tend to last longer, and the

difference in value between being a leader and being a follower may increase. This second
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Figure 2: Concentration, Welfare and Optimal Subsidies as a Function of τ for ρ = 0.3 and
δ = 0.03 in the M = m = 3 Model.
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effect may dominate for low τ as there is a self-reinforcing dynamic: when a lead is likely to

last longer, there is more incentive for a leader to invest, through low prices, to preserve the

lead.

To illustrate consider state (1,1). Figure 3 panel (a) shows how the price would change if

continuation values are held fixed at their τ = 0 values. The effect of changing τ is only to

reduce the markup, as in a static model. As expected, the price declines, in an approximately

linear way, in τ .

Panel (b) shows what would happen to seller-set equilibrium (τ = 0) prices if τ = 0

continuation values are multiplied by 1 minus the τ value on the horizontal axis. In this case,

all dynamic incentives, which lower prices, will be reduced linearly and the price increases

monotonically. Panel (c) shows what happens to equilibrium continuation values if a firm

sells or if its rival sells. It also shows what happens to the “advantage building” (AB) and

“advantage denying” (AD) values that BDK calculate to understand seller incentives, and

which are based on the differences between the continuation values and the continuation

value if no sale was made (a hypothetical outcome in the BDKS model).

Definition 1 The firm 1 AB incentive is µS
1,1−µS

1,0. The firm 1 AD incentive is µS
1,0−µS

1,2.

where µS
1,0 would be seller 1’s continuation value if, counterfactually, the buyer was to pur-

chase from neither seller. The AB (AD) incentive measures the gain in firm 1’s continuation

valuation when firm 1 makes a sale (firm 2 does not make a sale). Firm 2’s incentives can

be defined similarly. Accounting for dynamics, the effective marginal cost of seller 1 in state

e is therefore ĉ1(e) = c(e1)− (AB1(e) + AD1(e)).

Increasing τ lowers continuation values, but more slowly for the continuation values

associated with making a sale, as a lead is more likely to last longer. This lead preservation

effect is substantial: for example, a firm in state (2,1) expects to remain a leader for 5.4

periods when τ = 0, 11.3 periods when τ = 0.25 (which is close to the social planer solution),

and 196 periods when τ = 0.5. Therefore, the AB incentive increases, which tends to lower

the (1,1) price. Panels (d) and (e) show that for low τ the equilibrium price reflects how τ

is changing continuation values (i.e., equilibrium prices are very similar to those that firms

would set if τ = 0 and we only change continuation values).
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Figure 3: State (1,1) Prices and Incentives as a Function of τ for ρ = 0.3 and δ = 0.03 in
the M = m = 3 Model.
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In state (1,1) the effect of τ on the AD incentive is small, because, if there is no sale, the

seller knows there will be another period of tough price competition in (1,1). However, in an

asymmetric state, the incentive to not allow the laggard to make a sale is significant. The

solid lines in panel (f) show that the expected PDV of AB and AD incentives of sellers given

equilibrium play. The dotted lines show the values they would have if we computed the PDVs

using the distribution of states implied by play when τ = 0. AB and AD incentives show

a clear non-monotonic pattern, which is exacerbated by the game spending more periods in

asymmetric states where these incentives are higher when τ > 0.16

Subsidy. A government could implement the social planner solution using subsidies to

firms in different states. These subsidies would vary with τ . Solving for the optimal scheme

is straightforward using the reformulated equilibrium conditions. If we fix the choice prob-

abilities at their socially optimal values (DSP
1 ) and denote the optimal subsidy to firm 1 as

s1 (negative for a tax),

p1(e)− p2(e) = σ log

(
1

DSP
1 (e)

− 1

)
, (13)

for each state, and

p1 + s1 = Φ(DSP
1 ) + c1 − β(Q1 −Q2)(I− βQ2)

−1[DSP
1 ◦Φ(DSP

1 )]. (14)

If we specify that subsidy/taxes are only applied to the laggard this gives us M2 + M(M−1)
2

equations in the same number of unknowns. The linearity of these equations in p and s, with

DSP
1 fixed, implies that the subsidy scheme that implements the social planner outcome is

unique.17

Figure 2(c) and (d) show optimal subsidies in each state, and what this implies for the

expected PDV cost of the subsidy scheme to the government (a positive number is a transfer

to firms) and the PDV benefit to consumers relative to the equilibrium with no subsidies.

For τ close to zero, firms in state (1,2) and (1,3) face a tax, and there is a net gain to the

16This effect is more pronounced in the M = 3 game where a laggard is never more than one sale from
potentially catching up.

17This does not rule out the possibility that there will be multiple equilibria for a given set of subsidies.
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government, and a gain to consumers reflecting changes in prices. As τ increases, the effect

on consumers is U-shaped (with a small loss in CSPDV for τ ≈ 0.3), while the optimal

scheme subsidizes the laggard in all asymmetric states for τ > 0.4.

Figure 4 shows outcomes if the subsidy scheme that would implement the social planner

outcome if τ = 0 is imposed for different values of τ . This is one illustration of how policy

might go wrong if τ = 0 is assumed. For τ > 0.06, TSPDV is lower with the subsidy

scheme than it would be if no subsidy scheme was implemented at all, while concentration

is much higher, reflecting the fact that the subsidy scheme is designed to produce more

concentrated outcomes. The scheme also generates less revenue for the government as τ

increases, reflecting the decreasing probability that a laggard will pay the tax in states (1,2)

or (1,3).

Figure 5 shows that the effect that optimal τ = 0 subsidies can lower efficiency relative

to a no subsidy policy if τ > 0 generalizes to at least some other parameters.18 The red

areas indicate technologies where the τ = 0 subsidies increase TSPDV . In the white areas,

the subsidies lower efficiency. The similarity in the red areas across the two panels suggests

that, at least for this exercise, assuming τ = 0.5 might give more accurate predictions for

what happens when sellers have most, but not quite all, of the bargaining power than τ = 0.

18With τ = 0 subsidies we have difficulties finding equilibria for δ > 0.75, so we restrict the parameter
space considered in this diagram. We consider τ = 0.2 as we know that there is a unique equilibrium when
there are no subsidies.
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Figure 4: Outcomes in the M = m = 3 Model as a Function of τ when the Subsidy Scheme
that Would Implement the Social Planner Scheme when τ = 0 is Implemented.
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Figure 5: Technology Parameters for which Optimal τ = 0 Subsidies Increase or Reduce
TSPDV in M = m = 3 Model when τ = 0.2 and τ = 0.5. Changes in TSPDV are measured
relative to the unique no subsidy equilibrium, and are based on the most efficient equilibrium
supported by the subsidies. White areas indicate efficiency decreases. Green areas are
technology parameters where the subsidy does not have efficiency effects (when ρ = 1 the
costs in all states are equal).
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5 M = 30 Model

The M = 3 model is convenient but it is too simple to represent reality even in a stylized

way. We therefore use the full M = 30 BDKS model to perform our policy analysis. In this

section we will describe the technology parameters that we focus on, and we will show that

the qualitative features of outcomes (without policies), and how they vary with τ , resemble

the M = 3 model. The next section will show that policy effects can be sensitive to τ .

5.1 Technology Parameters and the Social Planner Solution

Ghemawat (1985) reports that the progress ratios (ρ) estimated in 97 academic studies cover

a range 0.6 to 1, with the 25th percentile between 0.75 and 0.8 and the 75th percentile between

0.85 and 0.9. When we consider a range of ρ we therefore consider 0.6 ≤ ρ ≤ 1. Figure 6

shows costs curves implied by ρs within this range.

We will also consider 0 ≤ δ ≤ 0.2. For δ > 0.1, it is not possible for both firms to coexist

at the bottom of the learning curves (m = 15 is the know-how level where costs fall to their

minimum values).

We consider ρ = 0.75 and δ = 0.023 (“illustrative parameters”) in more detail. ρ = 0.75

implies quite large LBD effects. δ = 0.023 implies that it is just possible for both firms to

remain close to e = 30 in the long-run if their prices support this outcome. In Appendix

E we will also consider the effects of policies when ρ = 0.95 and δ = 0.03. In this case,

experience does not lower costs very much, but the dynamics are still important enough to

be able to support multiple equilibria for some τ .

Figure 7(a)-(c) show the values of HHI t for t = 32, 200 and 1,000 for different technolo-

gies when the social planner controls the industry. The areas that are red in panel (a) and

blue in panels (b) or (c), which include the illustrative parameters, correspond to technolo-

gies where the social planner prefers one seller to move down its learning curve quickly, and

then invests in moving the second firm down its curve once it has, as a result of favorable

buyer ε shocks, accumulated a few units of know-how.

Panel (d) compares HHI32 and HHI200 under the social planner and market equilibria

when τ = 0 (market equilibria are found using homotopies, see the next subsection). The
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Figure 6: Costs as a Function of ρ and Forgetting Probabilities as Function of δ in the
M = 30, m = 15 Model.

white regions support multiple equilibria which lead to ambiguous comparisons for either

the medium-run or long-run or both. For the royal blue region, which covers almost all the

area where ρ < 0.85 (approximately the median value in the empirical studies considered by

Ghemawat (1985)) market equilibria are less concentrated, in both the medium-run and the

long-run, than the social planner solution. As noted, Appendix E presents policy effects when

market equilibria are more concentrated than the social planner would choose, although the

degree of equilibrium concentration in these cases is quite limited.

5.2 Multiple Equilibria

We begin by examining how bargaining affects the existence of multiple equilibria. Figure

8(a) shows the number of equilibria that are identified for different (ρ, δ) combinations when

τ = 0. This figure is constructed using the paths created by ρ and δ homotopies run sequen-

tially in different directions (i.e., we may either increase or reduce a parameter) (Appendix
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Figure 7: Values of HHI32, HHI200 and HHI1000 for (δ, ρ) with Social Planner Choices
and Comparison with HHI32 and HHI200 When τ = 0.

(a) HHI32 (Medium-Run) (b) HHI200 (Long-Run)

(c) HHI1000 (Very Long-Run)
(d) Compare Social Planner and Equilibrium
τ = 0 HHI32 and HHI200
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B.1). It resembles the equivalent figure in BDKS very closely apart from a small region, with

ρ close to 1 and δ ≈ 0.035 where we identify more equilibria, although our search was nat-

urally affected by knowing that we should at least identify the equilibria that BDKS found.

In this richer model, there are parameters where we identify as many as nine equilibria,

although, if multiplicity exists, three equilibria are most common.

We repeat the analysis for different τ in 0.05 steps. Figure 8(b) shows the smallest value

of τ for which multiplicity is detected. The white areas identify values where no multiplicity

is identified for any τ . There are some small groups of parameters, located around the edges

of regions where multiplicity exists for τ = 0, where multiplicity exists when τ has a small

positive value, but we do not identify multiplicity when τ = 0 (Appendix E provides an

example). We found similar regions when M = 3. In this sense, it is not always the case

that shifting bargaining power to buyers tends to eliminate multiplicity.

However, as shown in Figure 8(c), we never identify multiplicity for any (δ, ρ) when τ is

greater than or equal to 0.25, and, increasing τ at lower values, tends to shrink the combined

area of the parameter space where multiplicity exists. No multiplicity exists for τ = 0.5, a

commonly assumed value in the bargaining literature.

A natural question is whether bargaining selects a particular “type” of equilibrium and, if

so, what are the economics that underlie this selection. To understand what an answer might

look like, consider the illustrative parameters. Figure 9(a)-(c) show the prices in the three

τ = 0 equilibria that we identify. The one with an almost flat price surface has a 200-period

expected HHI of 0.5 (the firms are expected to be symmetric by this point), whereas the

other equilibria have a trench with lower prices in symmetric states, which tends to mean

that the firms will be asymmetric, with expected HHI of 0.517 and 0.526, after 200 periods

(although both firms will usually be at or close to the bottom of their cost curves). Panel

(d) shows the HHI200s associated by the equilibria on the τ -homotopy paths. The trench

equilibria are on a path that does not continue beyond τ = 0.067, whereas the path through

the flat equilibrium extends all of the way to τ = 1, although concentration increases and the

price surface changes so that all prices equal production costs as τ = 1. This also implies that

diagonal trenches (where prices are lower than in a state with less know-how) are eliminated

eventually.
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Figure 8: Multiplicity in the M = 30 Model

(a) Number of Identified Equilibria when Sellers Set Prices (τ = 0).

(b) Smallest Values of τ where Multiple Equi-
libria Are Identified.

(c) Smallest Values of τ ′ where Equilibria are
Unique For All τ ≥ τ ′.
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However, further investigation has revealed that, while it is quite common for diagonal

trench equilibria to be eliminated, there are also parameters where flat equilibria are elimi-

nated and there are (τ , ρ, δ) combinations for which the only equilibria that we can identify

have diagonal trenches (and possibly other features such as sideways trenches). It is therefore

unclear that we can say anything about selection in general, and we do not try to pursue

the issue further in thus paper.19

One should not interpret these results as implying that there are never scenarios with

multiple equilibria for higher τ . For example, our policy analysis will consider a policy where

the leader cannot consider its AD incentives. While eliminating consideration of all dynamic

incentives by both firms would guarantee a unique outcome, we have identified more than

100 equilibria under our No Leader AD policy for some technology parameters when τ = 0.5.

5.3 Effects of Increasing τ with No Policies

Our M = 3 example illustrated that reallocating bargaining power to buyers raised market

concentration as a leader was more likely to sustain its lead, possibly taking concentration

beyond the level that would be chosen by a social planner so that total surplus is non-

monotonic in τ . The changes in market structure are driven both by how myopic buyers are

more likely to buy from the leader when the leader’s mark-up is restricted by the buyer’s

bargaining power, but also by how the leader’s dynamic incentives to make sales/prevent a

laggard from catching up can become much stronger if the leader expects that any lead will

be sustained for longer.

Figure 10 shows that we observe similar effects in theM = 30 model, using the illustrative

parameters as an example. The dashed lines in panel (a) show the paths of HHI32 (black)

and HHI200 (red) in a model where both sellers and buyers act myopically but bargain over

prices (given logit demand, the equilibrium will be unique). The dashed line in panel (b)

shows TSPDV under the same assumption.

The solid lines show the outcomes associated with equilibria in the dynamic model. When

τ = 0, concentration and the TSPDV are fairly similar in the dynamic model and with static

behavior. They are exactly identical when τ = 1 (as prices equal production costs and

19Of course, it is possible that some other type of equilibrium classification would give a clear result.
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Figure 10: The Effects of Changing the Allocation of Bargaining Power for the Illustrative
Parameters With No Policies. In (c) only equilibria on the homotopy path from the Low-HHI
equilibrium are shown.

(a) HHI32 and HHI200 (b) TSPDV

(c) Average PDV AB/AD Incentives (d) CSPDV
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Figure 11: Expected Number of Periods A Leader Expects its Lead to Last in 3 Different
States for the Illustrative Parameters in the M = 30 and m = 15 Model as a Function of τ .
Notice that there is a log-scale on the y-axis.

buyers are myopic in both cases). However, when τ is between zero and one, differences

can be substantial, and, in particular, concentration rises much more quickly with τ in the

dynamic model, and TSPDV is maximized when τ ≈ 0.2. Medium-run concentration declines

in τ for τ > 0.6.

Panel (c) shows that, as in our M = 3 example, the present value of AD incentives

increases dramatically when τ increases from zero, partly because play shifts towards states

where AD incentives are large (the difference between the solid blue and dashed blue lines).

For M = 3, we noted that the increase in the relative value to having a lead as τ increases

reflects how much longer the leader can expect its lead to last given equilibrium play. Figure

11 shows that, in the full model, the length of time that a leader in a low know-how state

expects its lead to last increases exponentially for low τ .
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As AB and AD incentives tend to lower prices, including in the initial symmetric state,

CSPDV also increases sharply when τ increases from zero, although it continues to increases

as τ goes to one, as buyers capture all of the available surplus. CSPDV with static behavior

is lower than with dynamic seller behavior for most τ , but it also increases much more

dramatically from τ = 0.5 to τ = 1, than for τ = 0 to τ = 0.5.

These patterns hold fairly generally, i.e., for different technology parameters, when LBD

effects on costs are strong. Figure 12 shows that for ρ < 0.9 and δ < 0.03, the industry

is most efficient for τ ≈ 0.3, even though efficiency is minimized by τ = 0 for ρ < 0.8,

and medium-run concentration is maximized for 0.5 ≤ τ ≤ 0.7. Similarly, seller dynamic

incentives (i.e., the sum of AB and AD incentives) are maximized when buyers have some

of the bargaining power for a large range of empirical relevant ρ parameters when forgetting

effects are not too large.20

20If one restricts attention to seller AD incentives, then there are maximized for values τ ≈ 0.6 for ρ = 0.9
(and low δ), and for lower ρ they are also maximized for higher τs than is true in the figure.
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6 Policies and the Allocation of Bargaining Power

We now turn to our analysis of policies in the full model. We particularly want to understand

whether the optimal design of policies, and their costs/benefits, change quickly when we move

away from τ = 0. We begin by discussing optimal subsidy schemes which secure that same

industry evolution that the social planner would choose. We then consider several policies

that might be used to try to “increase competition”. As these policies may tend to lower

efficiency by slowing how quickly the first firm moves down its cost curve, we also consider

policies that are introduced once one firm has made sufficient progress as well as policies

that apply throughout the life the industry.

We note two limitations of our analysis. First, because our model is very stylized, we do

not think it is appropriate to draw clear conclusions about which type of policy is better. We

therefore focus more on how interactions between dynamic incentives, bargaining and market

structure affect outcomes and why these interactions may mean that conclusions based on

a τ = 0 model are misleading. Second, our current discussion focuses on the illustrative

parameters (with some results for one alternative set pf parameters in Appendix E). Future

versions will try to understand which patterns appear to be general, although our current

conclusion that policies can be sensitive to τ should not be read as implying that we believe

that there are no parameters for which the level of τ is less important.

6.1 Optimal Subsidies

We can solve for the subsidies that implement the efficient evolution of the industry using

the reformulated equations. Figure 13 shows the subsidies provided to the laggard, in the

event that it sells, for τ = 0, 0.25, 0.5 and 1 for the illustrative parameters. Figure 14(a)

shows how optimal subsidies vary with τ continuously for a subset of states, and panel (b)

shows the expected present discounted cost to the government. Increasing τ from zero has

dramatic effects on optimal subsidies. Gor example, when τ = 0 it is optimal to provide a

very large subsidy in state (1,2), a large subsidy in states where the laggard has e = 2, but a

tax when e = 1 and the leader has a large lead. When τ = 0.25 optimal taxes and subsidies

have much smaller scales. When τ ≥ 0.5, the pattern of which states have subsidies and
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Figure 14: Optimal Subsidies and Expected Net Cost of Optimal Subsidies as a Function of
τ for the Illustrative Parameters.

(a) Optimal Subsidies for Select States (b) Expected PDV Cost of Optimal Subsidy

which have taxes is different (e.g., the laggard is taxed if it makes a sale in (1,2)).

The structure of optimal subsidies may appear unintuitive. For example, when τ = 0,

the non-subsidy equilibrium probabilities that the laggard makes the sale in state (1,2) are

higher than the social planner would choose but the optimal strategy is to subsidize a sale by

the laggard. The fact that this can happen reflects the how incentives across states interact.

As the leader is more likely to preserve its lead for longer in the social planner’s solution

(which is being implemented), a firm in state (2,1) has very strong dynamic incentives when

τ = 0 (its AB incentive is 127.3 and its AD incentive is 80.7). Therefore the leader would

price as if it had a large, negative marginal cost, and the role of the subsidy to the laggard

is to make sure that its probability of making a sale is at the socially optimal level rather

than being vanishingly small. As the subsidy is very unlikely to be claimed, the expected

net cost of the optimal subsidy is quite small for all τ .

We also find that the subsidies that are optimal when τ = 0 can cause significant efficiency
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losses when τ > 0 but small. For example, for the illustrative parameters, the optimal

subsidies increase TSPDV from -92.61 to -90.47 when τ = 0, but if these subsidies were used

when τ = 0.03, TS would decrease from -92.24 to -95.34. Therefore, the sensitivity of the

welfare effects of policies to whether sellers are assumed to have all of the bargaining power

appears as pronounced in the M = 30 model as it was in our M = 3 example.21

6.2 Policies to Increase Competition

We now consider a set of policies that might be expected to “promote competition” by

imposing some limits on the ability or the incentives of a market leader to get too far ahead.

We recognize that it might seem odd to consider this type of policy when, at least for

low τ , the social planner would prefer more concentration in the early life of the industry

than equilibrium will generate. However, we think it is interesting to consider these policies

partly for this very reason as it seems plausible to us that there are policy-relevant sectors of

the economy where commentators advocating for these policies (i) presuming that they will

actually lead to more symmetric market structures and that (ii) presuming that efficiency

losses are not too large. Without a model it is unclear whether either presumption is cor-

rect. Alternatively, one might motivate our analysis by how market structures may be too

concentrated if bargaining power is roughly even split between buyers and sellers.

We proceed by describing the alternative policies that we consider before discussing how

they affect outcomes (for different τ) for the illustrative parameters under the assumption

that they are introduced in state (1,1) (i.e., when the industry begins). We will then discuss

whether policies would be more effective if introduced only once the leader has achieved a

particular level of know-how.

6.2.1 Policy Details

Restriction on Market Concentration. In his analysis of competition in the market

for wide-bodied commercial aircraft, Benkard (2004) considers a counterfactual where limits

21The very large size of the subsidies when τ = 0 leads to numerical problems when we try to calculate
equilibria for alternative values of τ , as some of the choice probabilities are within numerical precision of
zero. We will try to overcome this issue in future iterations.
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are imposed on the market share of the largest firm in a given quarter. His estimates imply

that market share limits of 60% and 51% slightly reduce consumer surplus and total surplus

on average (changes are less than 1%), as prices not only tend to rise in states where the

limits are binding, but also in states where firms would otherwise set low prices in order to

try to gain a dominant position.22

In our duopoly single-buyer-per-period model, we implement the policy as a “soft”

market share restriction assuming that a market leader has to pay a compliance cost of

χ × max {0, Di − ψ}2 whenever its sale probability is more than a threshold ψ > 0.5. As

χ increases, it becomes more costly for a firm to have a high market share. The total sur-

plus calculations that we present here assume that the compliance cost is not a real cost to

society. If it was counted as a real cost then in the periods when the leader has a larger

share, expected total surplus would be reduced and the policy would look worse (sometimes

significantly so) in terms of efficiency.

Incorporating this penalty, the first-order condition for the negotiated price becomes

−τ
[
D∗

1(e)(p
∗
1(e)− ĉ1)− χmax {0, D∗

1(e)− ψ}2
]
+ (1− τ) log

(
1

1−D∗
1(e)

)
×

[σ − (1−D∗
1(e))(p

∗
1(e)− ĉ1) + 2χ(1−D∗

1(e))max {0, D∗
1(e)− ψ}] = 0,

(15)

and the equation for the seller’s value becomes

V S∗
1(e)−D∗

1(e) (p
∗
1(e)− c(e1))−

∑
k=1,2

D∗
k(e)µ

S
1,k(e)− χmax {0, D∗

1(e)− ψ}2 = 0. (16)

The restriction can affect prices even when τ = 1, because the seller can guarantee that

it will not violate the constraint if it does not agree a price. In our analysis below we assume

that χ = 50 and ψ = 0.75. Appendix Figure C.2 compares several outcomes when χ = 10

22While absolute restrictions on market shares are rare, market shares can play an important role in deter-
mining potential Sherman Act Section 2 liability for actions that agencies or rivals claim are anticompetitive
(see discussion in the Department of Justice 2008 report “Competition and Monopoly: Single-Firm Conduct
Under Section 2 of the Sherman Act”, https://www.justice.gov/sites/default/files/atr/legacy/

2009/05/11/236681.pdf, although the report was withdrawn as official policy in 2009). The European
Union, the UK (e.g., https://tinyurl.com/hx75cf44) and legislation in the US Congress have proposed
frameworks that impose potentially onerous restrictions or requirements on platforms identified as dominant,
which is likely to, at least partially, reflect market shares.

44

https://www.justice.gov/sites/default/files/atr/legacy/2009/05/11/236681.pdf
https://www.justice.gov/sites/default/files/atr/legacy/2009/05/11/236681.pdf
https://tinyurl.com/hx75cf44


and ψ = 0.75.23

Restrictions on Pricing Incentives. BDK and Besanko, Doraszelski, and Kryukov

(2019b) consider the effects of alternative limitations on the dynamic incentives that firms

are able to consider in the BDK model, motivated by standards that have been proposed in

the antitrust literature for judging that a price is predatory.24

We consider how equilibrium outcomes change when the market leader (i.e., a firm i with

ei > ej)
25 :

� is assumed to be unable to consider dynamic incentives at all. This is implemented

by excluding the seller’s continuation values (i.e., the µS terms) from the first-order

conditions that determine prices, so that the perceived marginal cost is simply the

current production cost.

� is assumed to be unable to consider AD incentives, but it is able to consider AB

incentives (which, of course, may change in magnitude when AD incentives cannot be

considered).

Restrictions on Pricing. In practice, restrictions on the incentives that firms can con-

sider would be difficult to impose ex-ante. As a simple alternative, we therefore consider a

restriction that the leader’s price must be above its current cost of production, motivated

by how below-cost pricing is often viewed as a necessary, but not sufficient, condition for a

23A notable feature is that a lower χ can increase long-run compliance costs because it is more likely to
support market structures that violate the share threshold.

24We consider the effects of similar limitations in the BDKS setting where, instead of exit, there is some
possibility that the rival forgets. While the lack of exit may appear to make the BDKS model less attractive
for considering rules motivated by the legal literature on predation, it is not the case that the economic
literature on investment motivated by anticompetitive intent (e.g., Caves and Porter (1977), Lieberman
(1987)) necessarily assumes that exit has to happen. Further, as shown in SJHY, for many parameters in
the BDK model it is certain that a firm will not exit once it has made a sale, so that firms that have made
sales cannot be predated upon, whereas, of course, allegations of anticompetitive pricing often come from
rivals that have had some initial success. In the BDKS model, where a firm’s know-how can always decrease
if δ > 0, there is potential scope for a leader to act aggressively against a rival over a much wider range of
states.

25We have also computed some results imposing these restrictions on both firms. However, allegations of
anticompetitive conduct usually focus on the market leader.
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court to conclude that pricing is anticompetitive.26,27 The leader’s price will be above cost

when it cannot consider dynamic incentives, but considering some dynamic incentives may

be consistent with below cost pricing in at least some states.

Implementing this restriction involves introducing an additional set of equations (to which

homotopies can be applied) associated with the Lagrangian constraints on the leader’s prices.

To solve for an initial equilibrium from which to start homotopies, we use what can be

thought of as an iterative guess-and-verify approach. We first solve the problem with no

constraints, and then impose the constraints by setting prices equal to marginal cost in

states where they are below marginal cost, before resolving for prices in all of the other

states. We then check whether the constraints would still be binding, before re-solving

appropriately.

Multiplicity of Equilibria. Multiple equilibria can complicate policy analysis by making

comparisons between no policy and policy scenarios ambiguous. As noted previously, many

equilibria can exist for some technology parameters under some of our policies even when

τ = 0.5. Our discussion will focus on the illustrative parameters. For these parameters we

find some multiplicity for low τ under the Concentration Restriction and Leader p ≥ mc

policies, but the predictions across these equilibria are sufficiently similar that they do not

complicate our conclusions. Based on our searches, which do identify multiplicity for other

technology parameters, equilibria under the incentive policies are unique.

6.3 Effects of Policies Introduced at the Start of the Industry’s
Life

Figures 15 shows how policies change expected concentration and surplus. Focusing on

τ < 0.8, the directional effects are broadly as expected. In particular, the policies lower

expected concentration. There is some cost to efficiency, but this cost is actually greater for τ

values between 0.2 and 0.5 (when the no policy equilibrium produces too much concentration)

26See discussion in the Department of Justice 2008 report “Competition and Monopoly: Single-Firm
Conduct Under Section 2 of the Sherman Act”, https://www.justice.gov/sites/default/files/atr/
legacy/2009/05/11/236681.pdf.

27In practice, there are many arguments about the appropriate measure of cost, and these would, of course,
be significant in a setting where an incremental sale lowers expected future costs.
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Figure 15: Effects of Policies Introduced at the Start of the Industry’s Life on Concentration
and Total and Producer Surplus, for the Illustrative Parameters. The compliance costs of
the Concentration Restriction policy are not counted as costs to society in total surplus
calculations, although they are costs to the sellers.

(a) HHI32 (b) HHI200

(c) TSPDV (d) PSPDV
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Figure 16: The Present Discounted Value of Sellers’ AB and AD Incentives With and With-
out the No Leader AD Policy for the Illustrative Parameters.

than it is for τ = 0, reflecting how the effects on market structure can be larger when the

market would be more concentrated with no policy. The policies soften competition so that

even though the policies tend to promote symmetry, prices tend to increase, raising producer

surplus, and lowering consumer surplus (not shown) and efficiency. The effects of the Leader

p ≥ mc policy are quite modest, on both concentration and efficiency, for all τ , reflecting

the fact that below marginal cost pricing only happens in a limited number of states even

though dynamic incentives affect the evolution of market structure.

The effects are qualitatively different for the No Leader AD policy for τ ≥ 0.8. Medium-

run concentration, TSPDV and CSPDV increase (i.e., concentration moves in the opposite of

the expected direction). While we would not suggest that τ ≥ 0.8 is likely of particular rele-

vance for empirical work, the logic is illustrative of interactions between dynamic incentives

within the model. In particular, in the equilibrium with the policy, the discounted expected

value of sellers’ dynamic incentives (which lower prices) increases for high τ because AB

incentives rise, even though the leader cannot consider AD incentives. This is illustrated

in Figure 16, which shows the value of the AB and AD incentives with no policies, and

the value of AB incentives and the laggard’s AD incentives (which can affect prices) in the
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Figure 17: Effects of Policies on Expected Total Surplus in 32nd and 200th Periods.

(a) TS32 (b) TS200

equilibrium with the policy. When τ ≈ 0, the policy slightly lowers AB incentives, which

strengthens how the policy tends to increase prices. For higher τ , the policy increases the

value of AB incentives (compare the black solid and dotted lines), but the elimination of the

AD incentive dominates until τ ≈ 0.8 when AB incentives with the policy exceed the sum

of the AB and AD incentives without the policy. As discussed in Appendix D, the policy

causes the leader’s prices to fall in the early periods of the game which increases efficiency.28

6.4 Policies that are Introduced Only When the Leader Reaches
a Specific State

In practice, there may only be political pressure for these policies once an industry has

reached a sufficiently advanced state of development. Moreover, an analysis of the effects of

policies introduced at the start of the industry shows that the effects of policies on the PDV

28The value of HHI8 is actually lower in the τ = 1 equilibrium than in the social planner solution (even
though HHI32 and HHI200 are higher) implying that additional sales by the leader in low know-how states
like (2,1) or (3,1) can increase efficiency.
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of welfare measures and their effects on the expected values of those measures later in the

game can be quite different. For example, Figure 17 show how the policies affect affect TS32

and TS200. While the policies lower TSPDV for almost all τ , efficiency may increase later in

the game for at least some policy-τ combinations.29

We therefore also compute outcomes under what we call “trigger policies”. These policies

take the form that “the policy will be introduced as soon as one firm reaches know-how state

e′ and will then last forever”. We assume that the government is committed to e′, and that

the sellers understand that the policy will be introduced as soon as e′ is reached.30

Figure 18 shows how TSPDV changes for four different τ , as a function of the trigger. As

none of the policies constrains firms in state (1,1), the outcomes when the trigger is e′ = 2

are identical to those when the policy is introduced at the start of the industry.31 Trigger

policies do raise the TSPDV when τ = 0 and the trigger is set so that the policy is introduced

when one firm has made it (close to) state m (i.e., the lowest know-how state where costs

are minimized).

However, this is not true if τ = 0.25, with the policies lowering TSPDV for all triggers (for

the Leader p ≥ mc policy there is no effect for e′ ≥ 6 triggers). The changes in whether the

policy increases TSPDV happen for τs quite close to zero: for example, No Leader Dynamics

and No Leader AD policies with triggers of e′ = 20 lower TSPDV if τ > 0.06 (with negligible

effect for τ ≥ 0.8) and the Concentration Restriction policy lowers TSPDV if τ > 0.08. This

is another example of how allowing buyers to have even limited bargaining power change the

qualitative conclusions that should be drawn.

The trigger policies raise TSPDV for τ = 0 not because they affect behavior only once

they are enforced. Instead, it is because they actually increase concentration in the initial

periods of the game. The intuition is that laggards know that they will benefit from the

policy once the trigger is reached, so they compete less aggressively to try to catch-up before

the leader reaches the trigger (so that the leader reaches the trigger more quickly). Figure

29The intuition is that policies that make it more likely that there will be a second low-cost producer,
which raises efficiency once it has been achieved.

30Of course, outcomes might be different if the introduction of the policy is uncertain or is a probabilistic
function of market structure or prices.

31A state 2 trigger implies that the policy is imposed as soon as there is a leader, which is the equivalent
to imposing leader-only policies (like ours) at the start of the industry.
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Figure 18: Effects of Policies on TSPDV as a Function of the Trigger State for the Illustrative
Parameters. The compliance costs of the Concentration Restriction policy are not counted
as costs to society in total surplus calculations, although they are costs to sellers.

(a) τ = 0 TSPDV (b) τ = 0.25 TSPDV

(c) τ = 0.5 TSPDV (d) τ = 0.9 TSPDV
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19 shows that, for the triggers that increase total surplus, expected concentration and total

surplus after 8 periods are higher than with no policy when τ = 0, whereas expected total

surplus and consumer surplus after 32 periods may be lower as it is more likely that only

one firm will have a low cost, but the imposed policy will be reducing competitive pressure

to lower prices.

7 Conclusion

Models in the dynamic competition literature have assumed that sellers compete by setting

prices, even though these models are often motivated by issues arising in industries where

firms are selling large capital goods and buyers are likely to engage in at least some ne-

gotiation over prices. The applied bargaining literature, which has found that bargaining

affects mark-ups, pass-through and the effects of mergers, has focused on static settings

where market structure is not itself affected by bargaining. This paper extends a well-known

stylized model of dynamic competition, where sellers benefit from learning-by-doing, to ask

whether allowing for bargaining, rather than assuming that sellers set prices, could signif-

icantly change the types of outcomes and policies that the literature has focused on. We

are particularly interested in whether allowing for buyers to have limited bargaining power

affects outcomes, as we believe that empirical researchers could often presume that, in these

situations, assuming price-setting is a reasonable approximation. We analyze these issues

using a model of bargaining that nests the standard price-setting assumption as a special

case.

We find that outcomes, such as expected market concentration and efficiency, change

quite dramatically as we move away from price-setting for many, although certainly not all,

technology parameters, and that, absent policies, equilibria are unique once buyers have even

quite moderate bargaining power. Our main intuition for this result comes from the fact

that when buyers receive a small amount of bargaining power, the static effect of bargaining

will have the largest (reducing) effect on the margins of sellers that have a large lead over

their rivals (i.e., they are close to being monopolists). But, when buyers are myopic, this

will tend to reduce the already small probability that laggard firms make sales, and therefore
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tend to increase how long a leader will expect its lead to last. The expected lifetime of a

lead can increase exponentially, so that even as reallocating bargaining power lowers sellers’

expected payoffs in any future state (holding continuation values fixed), the reallocation of

bargaining power towards buyers raises the relative payoff to being a leader, rather than

being a follower. As a result, firms compete more aggressively to become, and remain,

leaders. This can raise efficiency when, because price-setting sellers do not capture all of

the benefit from lowering their costs, the leader is likely to move too slowly down its cost

curve in a price-setting equilibrium, but, even for these types of parameters, it can lead to

concentration being excessive once buyers have even quite moderate bargaining power.

Our results illustrate how dynamic incentives, market structure and bargaining power

interact in ways that we do not arise in the existing static literature on bargaining and have

not been recognized in the literature on dynamics. Our results also show that these results

matter for policy design, although we recognize that our model is more stylized than one

would want to use to design policies for a specific industry. The effects are particularly clear

when we consider optimal subsidies, with subsidies that would maximize efficiency when

sellers have all of the bargaining power potentially lowering efficiency when sellers have the

vast majority, but not quite all, of the bargaining power for at least some empirically relevant

parameters. When analyzing policies that might seem designed to increase competition, we

find that the efficiency costs and benefits of these policies (relative to having no policy)

depend on the bargaining power parameter. In future work we will consider other policy-

relevant variables, such as the size of magnitude of production cost efficiencies that required

to make mergers procompetitive, are similarly sensitive.

The model could be enriched a number of ways. It would be interesting to consider

multi-unit purchases and multiple purchases, and to understand how outcomes with bar-

gaining over prices compare with outcomes when sellers choose quantities (as is sometimes

assumed when researchers observe sales to a number of buyers in a given time period, such

as a quarter, within the data). The framework in SJHY, where buyers can be moderately

“forward-looking”, can easily be incorporated into the current model. In SJHY we find

that the primary effect of forward-looking buyers is to soften competition and these effects

are significant when buyers only expect to capture a small share of future surplus. There-
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fore, bargaining power and forward-looking behavior can be viewed as two different forms of

strategic buyer behavior that may have opposite effects.32

32However, we find that either type of buyer sophistication eliminates multiple equilibria, and, in initial
work, we have found that this happens even more quickly when we allow for both aspects.
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ONLINE APPENDICES FOR “Bargaining and

Dynamic Competition” by Deng, Jia, Leccese and

Sweeting

A Sketch Proofs of Proposition 1

Recall Proposition 1.

Proposition 1 1. If τ = 1, prices will equal marginal production costs in all states, for

all bp, ρ and δ.

2. when bp = 0, there will be a unique symmetric MPNE when

(a) δ = 0 for all ρ and τ (a result that also holds for intermediate values of bp not

considered in this paper).

(b) τ = 1 for all ρ and δ.

Proof of Part 1. The structure of the proof is to show that V S must be zero in every

state, which implies that price will equal marginal production costs. Since τ = 1, the solution

to the bargaining problem satisfies the following equation

(pi(e)− ci(ei))Di(p(e), e) +
∑
k=1,2

Dk(p(e), e)µ
S
i,k(e) = µS

i,−i(e), (17)

where µS
i,k(e) = β

∑
e′ Pr(e

′|e, qk)V Si(e
′) is firm i’s continuation value after the buyer pur-

chases from firm k, and the subscript −i denotes the rival firm.

Recall that firm i’s beginning of period value satisfies the following equation (18),

V Si(e) = (pi(e)− ci(ei))Di(p(e), e) +
∑
k=1,2

Dk(p(e), e)µ
S
i,k(e). (18)

Plugging (17) into (18) yields that

V Si(e) = µS
i,−i(e) = β

∑
e′

Pr(e′|e, q−i)V Si(e
′).
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The above equation can be rewritten in a matrix form,

VSi = βQVSi,

where VSi is an M
2 × 1 vector, and Q is an M2 ×M2 Markov matrix. Therefore,

VSi =
(
lim
T→∞

βTQT
)
VSi = 0.

Plugging V Si(e) = 0 into (17) yields that pi(e) = ci(ei).

Proof of Part 2(a). Follows from the recursive proof of BDKS, and the fact there can

only be one (static) MPNE in the absorbing state (M,M).33

Proof of Part 2(b). The previous proof shows that , if τ = 1, V Si(e) = 0 and pi(e) =

ci(ei) in all states. As a result, the MPNE is characterized by the equations concerning the

buyer’s value:

V B∗(e)− bpσ log

(∑
k=1,2

exp

(
vk − p∗k(e) + µB

k (e)

σ

))
− (1− bp)

∑
k=1,2

D∗
k(e)µ

B
k (e) = 0, (19)

where

µB
k (e) = β

∑
e′

Pr(e′|e, qk)V B∗(e′).

If bp = 1, (19) can be rewritten as

V B∗(e) = σ log

(∑
k=1,2

exp

(
vk − p∗k(e) + β

∑
e′ Pr(e

′|e, qk)V B∗(e′)

σ

))
.

One can view the right hand side as a functional of V B∗(·). We denote the functional by

T and show next that T satisfies Blackwell’s sufficient conditions for a contraction (see

Theorem 3.3 in Stokey, Lucas and Prescott, 1989).

33Note that in state (M,M), the value of bp has no effect on any buyer’s strategy. However, this does not
necessarily imply that there is uniqueness in earlier states even when movements through the state space are
unidirectional. See Appendix D in SJHY for a discussion.
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It is clear that T is monotone. That is, [T (V B)](e) ≤ [T (V̂ B)](e) if V B(e) ≤ V̂ B(e).

Note also that for any constant a ≥ 0, [T (V B + a)](e) = βa + [T (V B)](e). Therefore,

Blackwell’s sufficient conditions are satisfied and T is a contraction mapping. By the Con-

traction Mapping Theorem, T has exactly one fixed point, which implies the existence and

uniqueness of the MPNE.

If bp = 0, the buyer’s problem is effectively static and (19) can be rewritten in a matrix

form,

VB = βQ̂VB,

where VB is an M2 × 1 vector, and Q̂ is an M2 ×M2 Markov matrix. Therefore, VB =

(I− βQ̂)−10 = 0 and V B∗(e) = 0 uniquely solves (19).
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B Methods for Finding Equilibria

B.1 Homotopies

This Appendix provides details of our implementation of the homotopy algorithm using the

example of how we use a sequence of homotopies to try to enumerate the number of equilibria

that exist for different values of (ρ, δ) for given values of τ . Our implementation of other

homotopies, for exampl,e in τ , in the paper is similar to a single step in this sequence.

B.1.1 Preliminaries

We identify equilibria at particular gridpoints in (ρ, δ) space. We specify a 201-point evenly-

spaced grid for the forgetting rate δ ∈ [0, 0.2] and a 41-point evenly-spaced grid for the

learning progress ratio ρ ∈ [0.6, 1]. The state space of the game is defined by an (30 × 30)

grid of values of the know-how of each firm.

B.1.2 System of Equations Defining Equilibrium

An MPNE is defined by a system of equations (one V S∗ equation (text equation (16)) for

each of 900 states and one p∗ equation (text equation (4)) for each of 900 states. If bp > 0,

there are an additional 465 V B∗ equations (text equation (3)), reflecting a buyer symmetry

assumption. The grouping of all of the relevant equations is denoted F .

B.1.3 Homotopy Algorithm: Overview

The idea of the homotopy is to trace out an equilibrium correspondance as one of the

parameters of interest is changed, holding the others fixed. Starting from any equilibrium,

the numerical algorithm traces a path where a parameter (such as δ), and the vectors V B(e),

V S(e) and p(e) are changed together so that the equations F continue to hold, by solving a

system of differential equations. The differential equation solver does not return equilibria

exactly at the gridpoints so it is necessary to interpolate between the solutions returned by

the solver. Homotopies can be run starting from different equilibria and varying different

parameters. When these different homotopies return solutions at the same gridpoint it is
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necessary to define a numerical rule for when two different solutions should be counted as

different equilibria.

B.1.4 Procedure Details

Step 1: Finding Equilibria for δ = 0. The first step is to find an equilibrium (i.e., a

solution to the 1,800 or 2,265 equations) for δ = 0 for each value of ρ on the grid. There

will be a unique MPNE for δ = 0, as, in this case, movements through the state space are

unidirectional, so that the state will eventually end up in the state (M,M) where no more

learning is possible.34

We solve for an equilibrium using the Levenberg-Marquardt algorithm implemented using

fsolve in MATLAB, where we supply analytic gradients for each equation. The solution for

the previous value of ρ are used as starting values. To ensure that the solutions are precise

we use a tolerance of 10−7 for the sum of squared values of each equation, and a relative

tolerance of 10−14 for the price and value variables that we are solving for.

Step 2: δ-Homotopies. Using the notation of BDKS, we explore the correspondence

F−1(ρ) = {(V∗,p∗, δ)|F (V∗,p∗; ρ, δ) = 0, δ ∈ [0, 1]},

The homotopy approach follows the correspondence as a parameter, s, changes (in our

analysis, s could be δ, ρ or τ). Denoting x = (V∗,p∗), F (x(s), δ(s), ρ) = 0 can be implicitly

differentiated to find how x and δ must change for the equations to continue to hold as s

changes.
∂F (x(s), δ(s), ρ)

∂x
x′(s) +

∂F (x(s), δ(s), ρ)

∂δ
δ′(s) = 0

where ∂F (x(s),δ(s),ρ)
∂x

is a (1,800 x 1,800, assuming bp = 0) matrix, x′(s) and ∂F (x(s),δ(s),ρ)
∂δ

are

both (1,800 x 1) vectors and δ′(s) is a scalar. The solution to these differential equations will

34BDKS discuss this result for bp = 0. It will also hold for any higher value of bp, as movements through
the state space are unidirectional.
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have the following form, where y′i(s) is the derivative of the i
th element of y(s) = (x(s), δ(s)),

y′i(s) = (−1)i+1 det

((
∂F (y(s), ρ)

∂y

)
−i

)

where −i means that the ith column is removed from the (1,801 x 1,801) matrix ∂F (y(s),ρ)
∂y

.

To implement the path-following procedure, we use the routine FORTRAN routine FIX-

PNS from HOMPACK90, with the ADIFOR 2.0D automatic differentiation package used

to evaluate the sparse Jacobian ∂F (y(s),ρ)
∂y

and the STEPNS routine is used to find the next

point on the path.35,36

The FIXPNS routine will return solutions at values of δ that are not equal to the grid-

points. Therefore we adjust the code so that after each step, the algorithm checks whether

a gridpoint has been passed and, if so, the routine ROOTNX is used to calculate the equi-

librium at the gridpoint, using information on the solutions at either side.37

The time taken to run a homotopy is usually between one hour and seven hours, when it

is run on UMD’s BSWIFT cluster (a moderately sized cluster for the School of Behavioral

and Social Sciences).

Step 3: Enumerating Equilibria. Once we have collected the solutions at each of the

(ρ, δ) gridpoints we need to identify which solutions represent distinct equilibria, taking into

account that small differences may arise because of numerical differences that are within our

tolerances. For this paper, we use the rule that solutions count as different equilibria if at

least some elements of the price vector differ by more than 0.001.

35STEPNS is a predictor-corrector algorithm where hermetic cubic interpolation is used to guess the next
point, and an iterative procedure is then used to return to the path.

36For details of the HOMPACK subroutines, please consult manual of the algorithm at https://users.
wpi.edu/~walker/Papers/hompack90,ACM-TOMS_23,1997,514-549.pdf.

37It can happen that the ROOTNX routine stops prematurely so that the returned solution is not exactly
at the gridpoint value of δ. We do not use the small proportion of solutions where the difference is more
than 10−6. Varying this threshold does not affect the reported results. We also need to decide whether the
equations have been solved accurately enough so that the values and strategies can be treated as equilibria.
The criteria that we use is that solutions where the value of each equation residual should be less than 10−10.
Otherwise, the solution is rejected. In practice, the rejected solutions typically have residuals that are much
larger than 10−10.
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Step 4: ρ-Homotopies. With a set of equilibria from the δ-homotopies in hand, we can

perform the next round of the criss-crossing procedure, using equilibria found in the last

round as starting points.38 From this round on, we run homotopies from starting points in

both directions i.e., we follow paths where ρ is falling as well as paths where ρ is increasing.

We have found that this is useful in identifying additional equilibria.

This second round of homotopies can also help us to deal with gridpoints where the first

round δ-homotopies identify no equilibria because a homotopy run stops (or takes a long

sequence of infinitesimally small steps). As noted by BDKS (p. 467), the homotopies may

stop if they reach a point where the evaluated Jacobian ∂F (y(s),ρ)
∂y

has less than full rank.

Suppose, for example, that the δ-homotopy for ρ = 0.8 stops at δ = 0.1, so we have no

equilibria for δ values above 0.1. Homotopies that are run from gridpoints where we did

find equilibria with higher values of δ and higher or lower values of ρ may fill in some of the

missing equilibria.

Step 5: Repeat steps 3, 2 and 4 to Identify Additional Equilibria Using New

Equilibria as Starting Points. We use the procedures described in Step 3 to identify new

equilibria at the gridpoints. These new equilibria are used to start new sets of δ-homotopies,

which in turn can identify equilibria that can be used for new sets of ρ-homotopies. This

iterative process is continued until the number of additional equilibria that are identifed in

a round has no noticeable effect on the heatmaps which show the number of equilibria. For

the BDKS, τ = 0 case, this happens after 8 rounds.

B.2 Method for Finding Equilibria Based on Three Reformulated
Equations in the M = 3 Model

In this Appendix, we describe the novel method that we use to identify the number of

equilibria that exist when M = 3.

As described in the text, the equilibrium conditions can be reformulated in terms of

38In practice, using all new equilibria could be computationally prohibitive. We therefore use an algorithm
that continues to add new groups of 10,000 starting points when we find that using additional starting points
yields a significant number of equilibria that have not been identified before. We have experimented with
different rules, and have found that alternative algorithms do not find noticeably more equilibria, across the
parameter space, than the algorithm that we use.
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the probability that seller 1 is chosen in each state. If we restrict ourselves to symmetric

equilibria then, together with the restriction that D1(e1, e2) = 1 − D1(e2, e1), then there

are just three unknown probabilities. We will use D1(1, 2), D1(1, 3) and D1(2, 3). The

equilibrium equations for these three states are:

σ log

(
1

D1(e1, e2)
− 1

)
− p1(e1, e2)− p2(e1, e2) = 0 (20)

and, from text Section 3.2,

p1 = Φ(D1) + c1 − β(Q1 −Q2)(I− βQ2)
−1[D1 ◦Φ(D1)]. (21)

determines prices.

We proceed in the following steps for a given (ρ, δ, τ) combination.

Step 1. Define a grid of possible for D1(1, 2) and D1(1, 3). For each, we use a vector [1e-

10, 1e-9, 1e-7, 1e-6, 1e-5, (0.0001:(0.9999-0.0001)/200:0.9999), 1-1e-5, 1-1e-6, 1-1e-7, 1-1e-8,

1-1e-9, 1-1e-10].

Step 2. For every combination on the grid, solve for the value of D1(2, 3) which solves

the equilibrium equation for state (2,3), and record the values of the equations 20 for states

(1,2) and (1,3), in matrices M(1, 2) and M(1, 3).39

Step 3. Use MATLAB contour command to define the shapes where the M(1, 2) and

M(1, 3) surfaces are equal to zero.

Step 4. Count all of the intersections of these curves, using the user-defined MATLAB

function InterX command.40

Of course, the contours are calculated using interpolation so the solutions are therefore

not quite exact. Therefore,

Step 5. Using the solutions based on the contours are starting points, solve the equilib-

rium equations using fsolve.

Step 6. Count the number of solutions where at least one choice probability is different

39We have not been able to prove uniqueness, but all of the the examples we have looked at there is a
unique solution.

40https://www.mathworks.com/matlabcentral/fileexchange/22441-curve-intersections.
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Figure B.2: Illustration of the Contour Plot for ρ = 0.1, δ = 0.05 and τ = 0.

from all of the other equilibria by at least 5e-4.

To give a sense of the procedure, consider the parameters ρ = 0.1, δ = 0.05 and τ = 0.0.

Figure B.2 shows the contour plot, with the 3 intersections in the bottom left identifying

equilibria. The intersection where D1(1, 2) ≈ 0 and D1(1, 3) ≈ 1 does not correspond to an

equilibrium.
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C Additional Tables and Figures
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Table C.1: Equilibria in the BDKS Model for Illustrative Parameters (δ = 0.023, ρ = 0.75) and
τ = 0 in the M = 30 and m = 15 Model.

Low-HHI Mid-HHI High-HHI

HHI1000 = 0.500 HHI1000 = 0.516 HHI1000 = 0.527
e1 e2 c1 c2 ∆1 ∆2 p1 p2 p1 p2 p1 p2
1 1 10.00 10.00 0.0230 0.0230 -0.54 -0.54 -1.63 -1.63 -1.61 -1.61
2 1 7.50 10.00 0.0455 0.0230 4.91 7.21 5.16 7.60 5.15 7.60
2 2 7.50 7.50 0.0455 0.0455 4.22 4.22 0.77 0.77 0.77 0.77
3 1 6.34 10.00 0.0674 0.0230 5.82 8.18 6.56 8.71 6.55 8.70
3 2 6.34 7.50 0.0674 0.0455 4.65 5.46 4.06 5.97 4.05 5.97
3 3 6.34 6.34 0.0674 0.0674 5.11 5.11 1.49 1.49 1.47 1.47
4 1 5.62 10.00 0.0889 0.0230 5.95 8.29 6.67 8.55 6.67 8.54
4 2 5.62 7.50 0.0889 0.0455 4.86 5.85 5.46 7.08 5.46 7.08
4 3 5.62 6.34 0.0889 0.0674 5.08 5.42 3.81 5.53 3.80 5.54
4 4 5.62 5.62 0.0889 0.0889 5.22 5.22 1.72 1.72 1.70 1.70
10 1 3.85 10.00 0.2076 0.0230 5.89 8.16 6.14 7.71 6.13 7.69
10 2 3.85 7.50 0.2076 0.0455 5.05 6.06 5.75 6.43 5.75 6.42
10 3 3.85 6.34 0.2076 0.0674 5.20 5.81 5.80 6.31 5.80 6.31
10 8 3.85 4.22 0.2076 0.1699 5.10 5.20 4.49 5.85 4.49 5.86
10 9 3.85 4.02 0.2076 0.1889 5.11 5.15 3.26 4.56 3.25 4.55
10 10 3.85 3.85 0.2076 0.2076 5.12 5.12 2.47 2.47 2.43 2.43
15 1 3.25 10.00 0.2946 0.0230 5.79 8.05 5.98 7.36 5.97 7.38
15 2 3.25 7.5 0.2946 0.045 5.02 5.93 5.63 6.18 5.62 6.17
15 3 3.25 6.34 0.2946 0.0674 5.22 5.74 5.67 6.02 5.67 6.01
15 10 3.25 3.85 0.2946 0.2076 5.19 5.20 5.40 5.94 5.41 5.95
15 14 3.25 3.34 0.2946 0.2780 5.23 5.21 3.46 4.44 3.43 4.44
15 15 3.25 3.25 0.2946 0.2946 5.24 5.24 3.16 3.16 3.10 3.10
16 16 3.25 3.25 0.3109 0.3109 5.28 5.28 3.24 3.24 3.18 3.18
20 20 3.25 3.25 0.3721 0.3721 5.25 5.25 3.32 3.32 3.20 3.20
22 22 3.25 3.25 0.4007 0.4007 5.25 5.25 3.44 3.44 3.26 3.26
25 25 3.25 3.25 0.4411 0.4411 5.25 5.25 3.90 3.90 3.28 3.28
27 27 3.25 3.25 0.4665 0.4665 5.25 5.25 4.62 4.62 3.34 3.34
28 28 3.25 3.25 0.4787 0.4787 5.25 5.25 4.98 4.98 3.52 3.52
29 1 3.25 10.00 0.4907 0.0230 5.79 8.05 5.63 7.62 5.57 7.46
29 2 3.25 7.50 0.4907 0.0455 5.01 5.91 5.04 5.77 5.07 5.72
29 10 3.25 3.85 0.4907 0.2076 5.23 5.17 5.35 5.17 5.39 5.15
29 15 3.25 3.25 0.4907 0.2946 5.27 5.22 5.45 5.34 5.52 5.33
29 29 3.25 3.25 0.4907 0.4907 5.25 5.25 5.22 5.22 3.98 3.98
30 1 3.25 10.00 0.5024 0.0230 5.79 8.05 5.67 7.66 5.63 7.53
30 2 3.25 7.50 0.5024 0.0455 5.01 5.91 5.10 5.84 5.12 5.81
30 10 3.25 3.85 0.5024 0.2076 5.23 5.17 5.33 5.21 5.35 5.19
30 15 3.25 3.25 0.5024 0.2946 5.27 5.22 5.42 5.35 5.45 5.33
30 29 3.25 3.25 0.5024 0.4907 5.25 5.25 5.30 5.20 4.29 4.60
30 30 3.25 3.25 0.5024 0.5024 5.25 5.25 5.27 5.27 4.77 4.77

Notes: ci, pi, ∆i are the marginal costs, equilibrium price and probability of forgetting for firm i.
HHI∞ is the expected long-run value of the HHI.
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D Why Does a Policy Where a Leader Cannot Con-

sider Advantage Denying Incentives Raise Concen-

tration, Total Surplus and Consumer Surplus When

τ is High?

A surprising feature of the policy results is that, when buyers have almost all of the bargain-

ing power, a policy that prevents the leader from considering advantage-denying incentives

raises medium-run concentration and TSPDV and CSPDV , even though, when τ = 0, large

AD incentives have been viewed as being associated with a single firm establishing some

dominance. In this Appendix, we provide some explanation for this result, focusing on how

the policy endogenously changes AB incentives.

Figure D.1 shows the value of AB and AD incentives for a laggard firm 1 with e1 = 1 for

all possible values of e2, for three alternative values of τ : 0 and 0.5 (for which the no leader

AD policy reduces medium-run concentration and TSPDV ) and 0.9 (concentration and total

surplus increase). While one could obviously look at alternative values of e1 we will see that

the key changes in prices occur when firms are at the top of their cost curves.

For τ = 0, where we focus on the Low-HHI equilibrium with no policy, the policy slightly

reduces the AB incentive of the laggard (firm 1), and has almost no effect on the AB incentive

of the leader (firm 2). Therefore the only effect is the removal of the leader’s large AD

incentive. Equilibrium price changes are shown in the lower strip of Figure D.2 (prices

without the policy are shown in the upper strip). Prices in symmetric states change little,

but prices in non-symmetric states increase. Therefore the leader’s progress down its cost

curve is slowed (which is inefficient), and market structure tends to become more symmetric.

For τ = 0.5, the policy leads to an increase in AB incentives in the initial (1,1) state, and

prices in that state decrease. However, compared with the elimination of the leader’s large

AD incentives in states where there is a leader, the increase in AB incentives is smaller, so

that prices tend to increase by small amounts.

For τ = 0.9, the leader’s AD incentives are smaller (as buyers have most of the bargaining

power), but now there is an increase in the leader’s AB incentives over a significant number

of states, and the effect of this (as shown in text Figure 16) is that the total PDV of dynamic
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incentives, given equilibrium play, actually increases. Even though prices are very close to

production costs without the policy, the policy leads to lower prices at the start of the game,

and one firm tends to move down its cost curve more quickly in the first few periods of the

game, which is efficient.
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E The Effects of Bargaining Power For Technology Pa-

rameters For Which Market Concentration is Too

High with Price-Setting

In the text, we use ρ = 0.75 and δ = 0.023 as our “illustrative” parameters. For these

parameters, market concentration is significantly lower than the social planner would choose

when firms set prices, and we find that allowing for bargaining can have significant effects.

However, there are other technology parameters for which the social planner would prefer

lower market concentration. In this Appendix, we consider ρ = 0.95 and δ = 0.03 as an

example. For these parameters LBD effects are small: even with the maximum possible

know-how, costs are less than 20% lower than they are at the top of the cost curve.

Figure E.1 replicates text Figure 10 for our new parameters. For these parameters, there

is a unique equilibrium for τ = 0, but there is multiplicity for 0.07 ≤ τ ≤ 0.175, reflected

by how the equilibrium path folds back on itself. As with all of the other parameters we

consider, multiplicity is eliminated once buyers have moderate bargaining power. From an

efficiency perspective, concentration is too high for τ = 0 (although by a relatively small

amount), but for 0.175 ≤ τ ≤ 0.4 the unique equilibrium is close to efficient, but, for higher

τ , equilibrium concentration increases and efficiency declines.

For the text illustrative parameters, we observed that as τ increased from zero, the

AB and AD incentives increased as the sellers expected that a lead would tend to last for

longer and therefore potentially be more valuable (relative to being a laggard). However, as

increasing τ from zero reduces concentration, that effect does not occur for these parameters

and we observe AB and AD incentives declining in τ (ignoring the complication introduced

by the multiplicity).

We now turn to the question of the effects of policies. We have not yet completed the

analysis with policy triggers.

Subsidies. We can solve for the subsidies that implement the efficient evolution of the

industry using the reformulated equations. Figure E.2 shows the subsidies provided to the

laggard, in the event that it sells, for τ = 0, 0.25, 0.5 and 1 for the illustrative parameters.

As with the text illustrative parameters, we can see that the optimal subsidy policy varies
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Figure E.1: The Effects of Changing the Allocation of Bargaining Power for ρ = 0.95 and
δ = 0.03 With No Policies.

(a) HHI32 and HHI200 (b) TSPDV

(c) Average PDV AB/AD Incentives (d) CSPDV
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with the value of τ . In particular, the magnitude of subsidies/taxes is significantly smaller

when τ = 0.25 than when τ = 0, and that the structure of subsidies (i.e., which states are

subsidized and which are taxed) are different when τ = 0.5 than when τ = 0 or τ = 0.25.

This is slightly surprising as for both τ = 0 and τ = 0.5 the market equilibrium is more

concentrated than the social planner would choose, but it confirms our conclusion that the

interactions between bargaining power and incentives are both subtle and very relevant for

the design of policies.

Policies Designed to Increase Competition. Figure E.3 replicates text Figure 15, by

looking at how the policies designed to increase competition affect concentration and welfare,

as a function of τ .

Similar to the text illustrative parameters, the policies all tend to soften competition

and raise PSPDV , and the Leader p ≥ mc policy has limited effects (although it does raise

efficiency for low τ). For these parameters, the concentration restriction policy also has

almost no effect, presumably because the level of concentration is typically much lower than

the threshold we are using.41 The incentive policies also raise efficiency for high τ (No

Leader Dynamics for τ ≥ 0.65 and No Leader AD for τ ≥ 0.4), although, unlike for the text

illustrative parameters, this is not associated with an increase in concentration.

Our broad conclusion is therefore that even for these quite different technology parame-

ters, which limit the scope for these types of policies to raise efficiency, a cost-benefit analysis

of policy will continue to depend on what is assumed about the allocation of bargaining

power.

41With marginal cost pricing, the laggard would sell with probability 0.1824 even when the difference in
costs is maximized, so the constraint will not bind once the leader charges even a relatively small markup
in excess of the laggard.
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Figure E.3: Effects of Policies Introduced at the Start of the Industry’s Life on Concentration
and total and Producer Surplus. The compliance costs of the Concentration Restriction
policy are not counted as costs to society in total surplus calculations, although they are
costs to the sellers.

(a) HHI32 (b) HHI1000

(c) TSPDV (d) CSPDV
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F The Effects of Allowing an Outside Good or Variable

Product Differentiation

Our text analysis assumes that there is no outside good, and that σ = 1. These assumptions

mean that our results can be directly compared with those of BDKS, but it is natural to

ask what might change if these assumptions were relaxed. We briefly address this issue here,

assuming the illustrative parameters and that τ = 0, by showing what happens to medium-

run market concentration and the PDV of sellers’ AD incentives.42 We note, though, that

there could be additional effects once one introduces policies.

Figures F.1(a) and (c) show equilibrium HHI32 and the PDV of AD incentives when

σ = 1 and we allow for an outside good which gives the buyer an indirect utility of v−P0+ε0

and P0 has the fixed value that is shown on x-axis. The BDKS assumptions can be thought

of as the limiting case where the x-axis is extended to the right.

P0 = 10 corresponds to the assumption about the outside good in the BDK papers

that allow for entry and exit (in this case, an outside good is required to define outcomes

when there is monopoly). Allowing for an outside good with P0 = 10 changes equilibrium

outcomes very little compared to having no outside good. If we consider an outside good that

is significantly more attractive, multiplicity of equilibria is eliminated, the industry tends

towards medium-run monopoly, and the two sellers initially compete harder to become the

single firm that will, in the medium-run, compete with the outside good. As the outside

good becomes very attractive, the incentives to become the leading firm diminish as the

ability to exercise market power will be limited.

Figures F.1(b) and (d) show the same outcomes when there is no outside good but σ is

varied. Lower values of σ correspond to reduced product differentiation between the sellers,

which will tend to lower their equilibrium margins and reduce the probability that a higher

priced firm makes a sale. Our base results correspond to σ = 1. Lowering σ does not

eliminate multiplicity whereas we will see that raising τ does tend to eliminate multiplicity.

However, lowering σ does tend to increase concentration and incentives to become a leader,

42We thank Jim Dana for prompting us to look more carefully at these changes, in order to understand
the extent to which they lead to outcomes that are similar to, or different from, the effects of giving buyers
more bargaining power.
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and moderate increases in buyer bargaining power will have similar effects.
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Figure F.1: Effects of Allowing for an Outside Good and Variable Product Differentiation
when τ = 0 for the Illustrative Parameters.

(a) Varying Outside Good Attractiveness:
HHI32

(b) Varying Product Differentiation: HHI32.

(c) Varying Outside Good Attractiveness: PDV
Seller AD Incentives.

(d) Varying Product Differentiation: PDV
Seller AD Incentives.
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