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Abstract

Models of creative destruction posit that recessions are periods of reallocation and dis-
ruption, generating new ideas that catapult new firms to the frontier. However, empirical
evidence suggests that research and development (R&D) expenditures and patenting is pro-
cyclical, not counter-cyclical. Using panel data on the quantity and quality of patents for
nearly two decades, we provide a resolution to the tension by documenting that the quality of
innovation is counter-cyclical: innovations produced during busts have a larger effect on the
path of future research than those developed during booms. These results are a function of
financial constraints that affect private sector firms most heavily, shifting the concentration
of resources and time among R&D workers towards longer-term and basic science research in
the public sector during busts. Our results suggest that the ongoing coronavirus pandemic
could lead to large innovations in the future.
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1 Introduction

Research and development (R&D) is a fundamental driver of innovation and productivity across

firms and countries (Aghion and Howitt, 1992; Jones, 2002). While a common prediction from

these models of endogenous growth is that innovation is countercyclical, many have suggested that

R&D is actually procyclical (Griliches, 1990; Comin and Gertler, 2006; Barlevy, 2007). Recent

theoretical and empirical contributions have reconciled these differences by focusing on strategic

reasons for aligning innovation with booms (Shleifer, 1986) and exploring the impact of liquid-

ity constraints during busts (Ouyang, 2011; Aghion et al., 2012; Fabrizio and Tsolmon, 2014).

Understanding how large-scale shocks affect the quantity and quality of innovation comes at an

especially moment in history as countries press through the coronavirus and research begins to

unfold about how the pandemic affects innovation outcomes.

Our paper highlights a new dimension of the cyclicality in innovation, namely the quality of

innovation and its potential sources. The quality, specifically the development of general purpose

technologies (GPTs), may matter significantly for economic growth and social welfare (Bresna-

han and Trajtenberg, 1995). Moreover, one explanation behind the recent productivity paradox

(Syverson, 2017) is that lags between the development and diffusion of machine learning and ar-

tificial intelligence technologies could account for the sluggish productivity growth in recent years

(Brynjolfsson et al., 2019). If the quality of innovation is fairly countercyclical, then the slump of

in productivity growth over the past decade could be in part a function of a lag in the development

of genuine GPTs. We show that the quality of innovation is indeed countercyclical and results in

part through the presence of financial constraints and composition effects in the allocation of time
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towards R&D activities between public versus private institutions over the business cycle.

The first part of the paper begins by replicating the conventional results about the procyclicality

of the quantity of innovation before documenting the countercyclicality of the quality of innovation.

Our identifying variation exploits fluctuations in employment, real GDP, and financial constraints

across industries and time, allowing us to compare firms that vary in their exposure throughout

multiple business cycles between 1980 and 2015. Our results are robust to a standard Bartik-

like instrument that controls for supply-side shocks, focusing instead on industries that are more

exposed to certain occupations over others. Moreover, we control for national-level trends in grants

and subsidies, like those from the National Science Foundation, that are important for explaining

fluctuations in funding towards basic and applied science.

By examining industry trends in patenting and citations in the United States over the period

1980-2018, we find that patents produced during an industry downturn generate more citations

in aggregate and have a greater influence on future technologies. Patents produced in a year

when industry relative valuation is one percentage point lower have a one percentage point greater

textual similarity to future patents and receive 0.34% more citations on average. Although patent

production has been previously shown to be procyclical, patents produced during busts provide

more inspiration and are more instrumental in the trajectory of future technology. Our results are

consistent with Schumpeter (1939)’s view of recessions as times of creative destruction and higher

levels of innovation, as well as more recent theory from Manso et al. (2019) that firms pursue

greater experimentation (exploitation) during busts (booms), making GPTs countercyclical.

We also compare the similarity of patents produced in booms and busts to those that they cite.

If patents produced during booms have less shared text with those that they cite, this may imply

that boom patents are larger departures from what has previously been done in the industry. A
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similar argument would hold if boom patents cite less past work. These greater differences could

drive the differences in similarity and citation rates of future work. However, the estimates imply

that patents produced during booms have less citations and there are no business cycle-related

differences in textual similarity to cited patents. The differences between patents produced in

busts and booms is not driven by greater similarity or additional references to past patents.

The second part of our analysis provides evidence for potential mechanisms behind our results,

namely the presence of financial constraints among firms in the private sector and composition

effects that shift the concentration of R&D activities from applied to basic research during busts.

First, using the set of publicly-traded firms between 1997 and 2015, we show that a percentage

point (pp) increase in industry employment growth is associated with roughly a 0.91pp increase

in the growth rate of R&D expenditures among firms that rank above the median in financial

constraints, but only a 0.35pp increase for those that rank below. Furthermore, the cyclicality

of R&D expenditures is concentrated exclusively in industries that have higher citation-adjusted

patenting rates. Second, using a longitudinal sample of skilled workers between 2000 and 2013,

we find that a 1pp increase in occupational employment growth is associated with a null response

in the time that non-private skilled workers allocate to basic research and a 0.39pp decline in

the probability that they allocate over 10% of their time towards applied research. However, the

opposite is true for those in the private sector who exhibit a highly procyclical allocation of time

towards applied and basic research. Cumulatively, we interpret these results as suggestive evidence

that public R&D generates higher quality innovation during busts at least in part because of the

contraction of expenditures and time allocated to R&D in the private sector.

Starting with Schumpeter (1939) who described recessions as periods of “creative destruction”

where radical new innovations are created and the technologies they replace become obsolete, there
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has been a general recognition that innovation can be counter-cyclical (Caballero and Hammour,

1994; Aghion and Saint-Paul, 1998; Canton and Uhlig, 1999). In these models, periods of low

aggregate demand reduce the opportunity cost of experimentation. An alternative strand of theo-

retical work argues that innovation does not necessarily have to be counter-cyclical. For example,

firms may decide to delay implementation of innovation to periods of high demand (Shleifer, 1986;

Barlevy, 2007); firms might be credit constrained during recessions (Aghion et al., 2012); indus-

tries might differ in their obsolescence and patent protection (Fabrizio and Tsolmon, 2014); and,

individual inventor’s might also experience financing constraints as a function of housing wealth

shocks (Bernstein et al., 2020). Moreover, many empirical studies contradict the predictions of cre-

ative destruction models, finding that R&D spending and patenting is concentrated during booms

(Griliches, 1990; Geroski and Walters, 1995; Comin and Gertler, 2006; Koyptov et al., 2018).

Our paper fills an important gap in the literature by focusing on the role of quality in the

innovation process and investigating the production of these ideas. First, many studies use patent

counts as the main measure of innovation, but that approach may confound differences in the

contributions to technological development. Patents can differ greatly in their contributions to

technological progress and their significance to development (Kelly et al., 2018; ?). Moreover,

many of these studies use national business cycles as measures of aggregate innovation. The use

of national business cycles as a measure of economic conditions makes it impossible to disentangle

business cycle effects from time trends and national policies designed to encourage research and

development. It is possible that R&D subsidies concentrate in booms, leading to the pro-cyclicality

of patenting and R&D. Third, data on research and development is often limited to publicly traded

firms. The use of public firm data makes it impossible to determine whether there are different

trends in innovation in private firms. It is possible that public firms must emphasize economic
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conditions more in their decisions regarding research and development strategy, as the value of

their firm is tied to the stock market.

This study makes several contributions to the literature on innovation and business cycles. The

main contribution is the additional dimension of analysis of the value of innovations at different

points in the business cycle. We use a measure of technological similarity developed in ? to quantify

the influence that a patent has on future patents. Thus I am able to show that patents produced

during busts are more technologically similar to future patents in the industry. This is the first

study we’re aware of to analyze the long-run influence of patents on future innovations. Third,

we use the universe of patents produced between 1980-2019 and aggregate them to the NAICS-

3 industry-year level, which means that we include patents produced by private firms, research

organizations, and government agencies. The use of this sample accounts for the possibility that

public firms react differently to business cycles, as their profits are more directly tied to the stock

market. Finally, our estimation framework relies on industry booms and busts, disentangling the

effect of trends in national innovation policies from business cycles.

This study also has important implications for firms and policymakers. If innovation during

recessions is more influential than innovation produced at other points in the business cycle, it

may be important to use policy to encourage R&D at times when the economy is in a downturn.

Specifically, policymakers may want to increase R&D grants and subsidies at periods of low aggre-

gate demand. Then firms will have a lower resource cost of experimentation and the opportunity

effect will dominate. Firms also benefit from these results since we show that experimentation

during recessions is present and pays off in the long run, which is especially important for publicly

traded firms that often face pressure to meet quarterly earnings targets (Terry, 2017).
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2 Data and Measurement

2.1 Sources

Industry-level cycles—We proxy for industry level business cycles using aggregate industry-level

real output (in 2012 prices) and employment data obtained from the Bureau of Economic Analysis

(BEA) for the years 1998-2015. Employment and real output growth are frequently used proxies

for business cycle fluctuations, particularly at more disaggregated levels.1 To mitigate concerns

that employment growth is capturing supply-side shocks, we also use a standard Bartik shift-

share instrument that exploits the exposure of an industry to employment growth across different

six-digit occupations. To measure business cycle conditions at the firm-level, we also follow the

approach from Hoberg and Phillips (2010) and aggregate up for our industry-level exercises.2

Patent data—We obtain patent data for 1980-2015 from the PatentsView database, which

contains data on the universe of patents filed in the United States. Each patent is matched with a

measure of the similarity to the previous patents it cited and the patents that build off of work in

the patent. We obtain this measure from ?. They use a vector-space model based on earlier work

in Younge and Kuhn (2015) to estimate the technological distance between each citing/cited pair

of patents based on the technical description of each patent. Finally, the patents are matched to

industries using a concordance developed in Lybbert and Zolas (2014).

Occupation-level Panel (2003-2017)—The Bureau of Labor Statistics releases annual data

on employment and wages (across different parts of the distribution) through the Occupation
1See, for example, Blanchard and Katz (1992) for one of the first illustrations and Hershbein and Kahn (2018)

for a more recent example.
2See Appendix A for more details on the estimation of industry dynamics.
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Employment Statistics (OES) data tables. While employment is measured at a six-digit level, and

there are many new occupations introduced following 2012, we create an employment-weighted

average at a five-digit level that matches the identification of occupations in the Census. The key

feature of the data is the measurement of employment and income in every occupation.

Individual-level Panel of Educated Workers (2000-2013).—My primary dataset is the

U.S. IPUMS Higher Ed data, which is based on a series of surveys of science and engineering

graduates by the National Science Foundation since the 1990s, including the Survey of Doctorate

Recipients, National Survey of College Graduates, and the Survey of Recent College Graduates.

These surveys are combined into a single, integrated set of files called Scientists and Engineers

Statistical Data System (SESTAT). The IPUMS Higher Ed dataset made significant strides to

create comparable variables and definitions across the different versions of the NSF surveys, which

has been used in several recent contributions in the research policy literature (Jung et al., 2017).

Among the variables used from the micro-data are measures of time use in different work ac-

tivities. While they are not continuous measurements, respondents report a value equal to one if

they allocated at least 10% of their time towards the activity in the typical work week. Research

activities include either applied or basic research whereby applied research is defined as âstudy

directed toward gaining scientific knowledge to meet a recognized needâ and basic research is

defined as “study directed toward gaining scientific knowledge for its own sake.” Other activities

include development (“using knowledge gained from research for the production of materials or de-

vices”), design (“designing equipment, processes, structures, and/or models”), employee relations

(“recruiting, personnel development, and training”), management (“managing and supervising”),

production (“production, operations, and maintenance”), quality management (“quality or pro-

ductivity management”), sales and marketing (“sales, purchasing, marketing, customer service, or
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public relations”), professional services (“health care, counseling, legal services, etc”), teaching,

and finance (“accounting, finance, or contracts”).

Occupational Task Concentrations (O*NET).—To measure R&D tasks at a detailed six-

digit occupational level, we use O*NET, which is the new companion to the well-known Dictionary

of Occupational Titles (DOT) used in prior work (Autor et al., 2003). O*NET is a survey that

the U.S. Department of Labor administers to a random sample of U.S. workers within detailed

occupations. Respondents answer questions on an ordinal scale that measures both the importance

of a task and the frequency at which different tasks occur on the job. The data has typically been

used to measure the intensity of cognitive, non-routine, non-cognitive, routine, and manual skill

intensities across occupations (Autor et al., 2003; Autor and Dorn, 2013; Autor et al., 2008).

Using additional information on the universe of over 10,000 task statements in O*NET, I create

an occupational index of R&D intensity by extracting all task statements containing either the

words “research” or “develop.” Of course, there are examples of task statements that include

the word “innovation,” but these examples are few and far between.3 Following prior work by

(Autor and Handel, 2013), we take the product of the importance and frequency weights (when

available) to generate an overall intensity for each sub-index task and construct a standardized

z-score of their sum for each occupation × year.4 Since there are many tasks that meet these

requirements, the footnote documents several as examples and the full list will be posted on my

website for downloading and experimenting.5 While the advantage of this measure is that it
3In fact, only five task statements contain the prefix “innovat-” in the 2004 file. To illustrate that even inclusion

of the prefix would not necessarily produce a more reliable overall R&D index, consider one such task statement:
“Monitor the field of dance to remain aware of current trends and innovations.”

4Hagerty and Land (2007) find that using equal weights over subset variables for these types of indices provides
the greatest robustness and accuracy. The issue of potentially different weights is relatively minor when all are
measures are positively correlated.

5A couple examples include: “Direct and conduct studies and research on issues affecting areas of responsibility”;
“Conduct research to develop methodologies, instrumentation and procedures for medical application, analyzing
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represents the task concentration of RD activities across the full set of occupations over time, its

primary limitation is the lack of within-occupation variation. For example, pooling together 2004

to 2016 data, a regression of R&D intensity on occupation fixed effects produces an R-squared of

0.92, suggesting that the bulk of the variation is in the cross-section. Moreover, not all occupations

are updated each year, which means that attenuation bias could result from measurement error in

the the within-occupation task concentration variation. That leads us to use the measure primarily

as a diagnostic and for classifying individuals in the Census as high or low R&D workers.

As an illustration of the variation contained in these data, Figure 1 plots the distribution of

R&D task intensity for 2005-06 and 2017-18. For example, the mean z-score in 2015-06 is -0.14,

whereas it is 0.11 by 2017-18. Moreover, R&D task intensities are more skewed to the right in

2017-18. These differences in the distribution suggest that R&D tasks have, on average, become

more intense over time, which is consistent with evidence from Bloom et al. (2020) about the

increasing intensity of R&D activities. Unlike other attempts to measure R&D activities, this

approach focuses on the allocation of time among the workers in each occupation conducting the

actual R&D tasks. These occupational task intensities allow us to classify occupations as either

high or low R&D by partitioning off of the median z-score. That is, all occupations with R&D

task intensities above the median are classified as R&D-intensive, zero otherwise.

[INSERT FIGURE 1 HERE]

data and presenting findings”; “Plan, supervise, and conduct psychological research, and write papers describing
research results”; “Collaborate with colleagues to address teaching and research issues”; “Research and report on
specialized fields such as medicine, science and technology, politics, foreign affairs, sports, arts, consumer affairs,
business, religion, crime, or education.” Although these examples point towards a broader definition of R&D that
is not restricted purely towards traditional science and engineering occupations, they still capture the fundamental
feature of R&D as an activity devoted towards invention.
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2.2 Annual Industry Patent Summary Statistics

The first part of the analysis makes use of a panel at the NAICS-3/year level. The key variables

are the measures of industry economic conditions, the total number of patents filed in that year

(a weighted sum from the concordances), the total number of past patents cited, the total number

of forward citations generated, the textual similarity of filed patents to their citations, and the

textual similarity of filed patents to the citations they generate.

[INSERT TABLE ?? HERE]

Table ?? contains the summary statistics of the final industry-year panel. The average industry

relative investment and industry relative valuation are similar to estimates in Hoberg and Phillips

(2010). We estimate that the average industry has a 0.3% greater valuation than predicted in any

year.6 Investment is on average 2.97% greater than predicted, which is similar to the average 2.2%

in Hoberg and Phillips (2010). Our minimums and maximums are greater, but this is because

the years in this sample include more of the Great Recession and include the growth in venture

capital investment between 2010 and the present.7

On average, there are 1831 patents filed in each year in a three digit NAICS category, but

the distribution of patents over industries is highly skewed to the right. The median number of

patents filed in a given industry-year is 196. Each patent cites 15 previous patents and generates

17.55 citations on average. Both citing and cited patents have a measure of textual similarity of

0.26 to the relevant patent.
6The mean relative valuation is -0.3% in their paper, but is not statistically significantly different from these

results. Hoberg and Phillips also use the years 1980-2010 for their sample, while we have the additional years
2010-2015.

7https://news.crunchbase.com/news/there-are-more-vc-funds-than-ever-but-capital-concentrates-at-the-top/

https://news.crunchbase.com/news/there-are-more-vc-funds-than-ever-but-capital-concentrates-at-the-top/
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2.3 Annual Research and Development Worker Summary

Statistics

Table 2 documents descriptive statistics about the individuals in the NSF sample, distinguishing

between public and private sector workers. Beginning with demographic characteristics, males are

more likely to sort into private sector jobs (60 versus 47 percent), but there are no statistically

significant differences in the average age, share of whites, and number of children in the family.

There are, however, substantial differences in educational attainment. For example, public sector

workers are more likely to have a doctorate (9 versus 3 percent) or masters degree (38 versus 25

percent), but less likely to have a professional degree (6 versus 10 percent). These differences in

the share of workers with different educational degrees reflect, at least in part, differences in the

taste for science (Roach and Sauermann, 2010, 2014).

Turning towards the workplace characteristics, private sector workers earn considerably more

than their public sector counterparts with an annual salary of $72,119 (versus $56,214 in the public

sector). Moreover, the standard deviation in earnings is larger for the private sector, reflecting the

fact that there is greater heterogeneity and flexibility in compensation schemes. Private sector

workers also work longer hours than their counterparts and are more likely to reside within a

“career paths jobs.” This is consistent with past evidence that private sector workers are more

likely to value financial incentives and career mobility over other non-pecuniary job characteristics

(Bozeman and Kingsley, 1998; Bozeman, 2000).

To better understand these other job-specific features, the survey also contains questions ask-

ing respondents to rank their satisfaction with job characteristics, such as career opportunities
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and benefits, together with their overall perception of the job, all on a scale of one to four. Table

2 suggests that, whereas private sector workers report overwhelmingly greater career opportuni-

ties and financial (salary) compensation with averages of 0.02sd and 0.06, public sector workers

report averages of -0.07sd and -0.14. However, private sector workers rank much lower in their

reported benefits, job security, and perceived social impact. The fact that public workers earn less,

but experience these other positive job-specific amenities, reflects the presence of compensating

differentials in the market for scientists (Stern, 2004).

Finally, turning towards measurement of the job activities where students allocate over 10% of

their time per week, there are also a number of stark differences. For example, development, design,

and sales are also systematically higher among private sector workersâin fact, 40% of private sector

workers report allocating over 10% of their time to sales activities in a week, relative to only 19%

among public sector workers. These differences in time use reflect differences in the underlying

tasks and output among workers in these sectors (Autor and Handel, 2013).

[INSERT TABLE 2 HERE]

3 Business Cycles and the Quality of Innovation

3.1 Background

There are two opposing effects that recessions can have on research and development activity. The

first effect is the “supply of resources effect.” When an economy experiences a recession, capital

markets tighten and aggregate demand drops. It is more difficult for firms to obtain external

financing and firm profits often drop. This means that firms have fewer financial resources to devote
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to research and development. Due to these changes in the market, research and development will

increase in booms when finance is abundant and decrease in recessions when markets contract.

On the other hand, the “opportunity cost effect” posits that the cost of R&D also decline in

recessions. First, the cost of inputs to research decreases. Labor market wages, interest rates,

and the cost of materials all decrease during a recession. Second, the opportunity cost of research

decreases. As profits often decline during recessions, the cost of diverting effort from production

to research is lower in recessions. When aggregate demand increases in a boom, the benefit of

devoting more time and resources to production is higher, so firms do less research and development

in booms. Under the reduction in costs effect, innovation will be counter-cyclical.

The opposing effects imply the correlation between business cycles and the intensity of in-

novation is ambiguous. If the resources effect dominates the opportunity cost effect, R&D will

concentrate in booms and decline in recessions. If the reduction in opportunity cost effect domi-

nates the resources effect, innovative activities will increase in recessions and decline in booms.

While there is a large literature about the cyclicality of innovation and its various causes, there

is much less research on the quality of innovation over the business cycle. Building on Schumpeter

(1939) who argued that novel innovations concentrate at the bottom of a cycle, Manso et al. (2019)

develop a two-armed bandit model that predicts firms are more likely to pursue novel exploration

strategies in recessions. Their main theoretical result stems from the fact that firms find it less

costly to pursue exploratory research during busts, whereas the marginal opportunity cost of a

dollar of innovation on exploitation is lower during booms. We develop this further by exploring

the cyclicality in the quality of innovation using similar data on patents across industries and time.

This trade off between experimentation and exploitation stems from the diffusion of product

innovation, detailed in a five-step process by Gort and Klepper (1982). The first stage is initiated



14

by the introduction of a new product by a producer and ends when new competitors begin to

rapidly enter the market. The number of competitors continues to increase in stage two. Stage

three occurs when the number of entrants is roughly equal to the number of firm exits. In stage

four, the number of exits dominates the number of entrants. The final stage is defined as a second

period of zero net entry and the obsolescence of the product that could be driven by, for example,

a large in advance in a new technology.

Dating back to Burns (1934), a key assumption is the degree of product innovations decreases

over the product life cycle. In the beginning of stage two, a larger fraction of the innovations

by competitors have major consequences for product quality and the production process. As

the product cycle continues, innovations become increasingly minor since opportunities for dra-

matic improvements decrease. Minor innovations, such as quality control or marketing, could be

implemented during later stages of the cycle, decreasing the overall rate of technological advance.

[INSERT FIGURE 2 HERE]

When the implications of product life-cycle theory are combined with the insight that more

novel innovations are produced during recessions, we can predict their influence relative to inven-

tions at other points in the business cycle. The rate of technological advance should increase in

recessions and decrease in booms: firms choose to research more novel technologies during reces-

sions. These novel technological developments spark new product life cycles, leading to increases

in market entry and imitation. In booms, firms shift resources to production and make small it-

erations on product technology because the opportunity cost effect dominates the resource effect.

These less-novel innovations are consistent with the later stages of the product life cycle, meaning

that the rate of technological advancement will decline. Thus innovations in recessions will have
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a greater influence on future technologies than innovations in booms.

3.2 Empirical Specification

We estimate fixed effects regressions that vary the quantity and quality of patents with a proxy for

business cycle fluctuations, conditional on industry and year fixed effects. We measure innovation

outcomes in three ways: the logged number of patents, logged number of patents cited, the logged

number of future citations generated per patent, and the textual similarity of past patents cited

and future citations to the patents filed in a given industry-year.8 We also proxy for business cycle

fluctuations in four ways: year-to-year growth in real GDP (2012 prices), year-to-year growth in

employment, and both industry relative valuation and industry relative investment as defined in

Hoberg and Phillips (2010). The relative valuation measure is the average difference in predicted

firm valuation from actual valuation at the industry level. For example, if relative valuation for

manufacturing in 1998 is 0.05, this implies that manufacturing firm valuations were on average

5% above predicted values in 1998. The interpretation of relative investment is similar.

Our inclusion of industry and year fixed effects purges heterogeneity in patenting that is time-

invariant, capturing, for example, the fact that some industries are more innovative than others.

The year fixed effects enable us to control for aggregate trends in patenting and national level

business cycles. While we have also experimented with demographic controls, like the share of col-

lege graduates, to address concerns about changes in the composition of workers, we recognize the

potential that changes in patenting might also reflect supply-side shifts. We, therefore, construct

a Bartik-like measure of employment growth using three-digit industry × six-digit occupation em-
8The textual similarity measures come from Kuhn et al. (2020). They use a machine learning algorithm to

create a measure of similarity across patent text. We use the measures of similarity for each pair of patents linked
together by a citation.
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ployment counts between 2002 and 2018 from the Occupational Employment Statistics. Following

Goldsmith-Pinkham et al. (2019), we fix our base year to 2004 prior to the Great Recession and

exploit the exposure of industries to different occupational concentrations.

3.3 Main Results

Table 3 documents our main results. Start with the first four columns, we see that there is some

negative association between fluctuations in economic activity and the overall number of patents

when we use the relative valuation or investment as a proxy. Here, a 10% rise in valuation and

investment is associated with a 3.4% and 1.1% decline in the number of patents, suggesting that

the quantity of innovation is counter-cyclical. However, when we use industry employment or real

GDP growth as a proxy, we find less economically and statistically significant evidence. Each

specification includes industry and year fixed effects.

[INSERT TABLE 3 HERE]

One limitation with these results, however, is that they fail to control for heterogeneity in the

quality of innovation. That is, simply showing that there is some evidence of declines in patenting

during economic booms says nothing about the impact of the innovation. In order to measure the

level of impact that technologies produced have on future innovation flows, we construct measures

of the number of times a patent is cited in the years after it is published and its textual similarity

to future patents. We then aggregate these measures up to the industry-year level to measure

the average impact of innovations produced during industry booms and busts. We now explore

the contribution of patents to the future flow of innovation in an industry in columns 5-8. Here,

we find even stronger evidence of counter-cyclicality, although only when we use employment and
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real GDP growth as our proxy for economic conditions. Under these preferred specifications in

columns 7 and 8, a 1pp rise in employment and real GDP growth is associated with a 0.35% and

0.47% decline in the flow of future patent citations. We find similar results when we use patents

cited as the outcome variable, but the estimates are less statistically significant.

Are these patents similar to those that have already been produced? In particular, how are

business cycles associated with the novelty of an innovation, independent of citation counts?

Columns 13 to 16 investigate the effects of business cycle conditions on the similarity of patents to

those that have been cited before. We find that a 1pp rise in employment and real GDP growth is

associated with a 0.44% and 0.39% decline in patent similarity. This augments our earlier result

that the quality of innovation is increasing during recessions, pointing out that these innovations

are also unique and different than prior patents.

[INSERT TABLE 3 HERE]

4 Understanding the Mechanisms

4.1 Exploring the Possibilities

We now turn towards the underlying mechanisms behind the countercyclical evidence of quality

in innovation. We focus on three potential explanations.

First, if the firms that are more likely to experience liquidity constraints during busts are also

less productive, then the quality of their R&D and other innovation efforts might also be lower

for other unobserved reasons. For example, motivated by evidence from Terry (2017) that many

publicly traded firms underinvest in R&D to meet quarterly earnings targets, these companies
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might also display lower levels of productivity overall.

Second, if R&D workers are less likely to experience job loss over a business cycle, then they

might be less risk averse and more likely to invest in longer-run projects that ultimately pay large

dividends during booms. For example, Acemoglu et al. (2018) develop a model of endogenous

entry and exit, hiring skilled workers to perform R&D. To the extent these skilled workers are less

likely to experience layoffs over the business cycle, they might be more suited to produce general

purpose ideas that benefit their firms during booms.

Third, there could be a selection effect in the class of organizations that participate in inno-

vation. For example, if universities process funding more slowly and/or obtain longer-run grants

(Lane et al., 2015), then they might have a comparative advantage for innovating during reces-

sions. Moreover, there is suggestive evidence that government funding does not crowd out private

investment for R&D (Becker, 2015), meaning that the complementarity could enable public and

non-profit organizations to innovate more during recessions.

4.2 Examining the Evidence

We begin by investigating the potential role of financial constraints. While others have historically

recognized the role of financial constraints (Aghion et al., 2012), they have done so in the context

of explaining the procyclicality of R&D, rather than the counter-cyclicality of innovation quality.

Using data from Compustat, we regress year-to-year growth in R&D expenditures on year-to-

year three-digit industry employment growth, allowing for separate treatment effects among firms

that are more versus less financially constrained, conditional on firm and year fixed effects. This

allows us to exploit within-firm variation in R&D intensity over the business cycle, tracing out the
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response of R&D to different industry shocks from over a decade. We measure financial constraints

using the firm-year index introduced by Hoberg and Maksimovic (2015) who apply textual analysis

techniques to financial statements among publicly traded firms.

Table 4 documents these results. Not surprisingly, we find that R&D expenditure growth is

highly procyclical: a 1pp rise in industry employment growth is associated with a 0.74pp increase

in R&D growth (column 1). Once we add firm controls, such as logged revenue, employment, and

capital, the coefficient declines slightly to 0.69, but is statistically indistinguishable (column 2).

However, once we allow for heterogeneity among firms that are more financially constrained, we

find an even larger associated on the interaction: a 1pp rise in industry employment growth is as-

sociated with a roughly 0.90pp rise in R&D expenditure growth among the financially constrained

firms, but only a 0.35pp rise among those that are not constrained.

While these results are consistent with the presence of financial constraints affecting the quan-

tity of innovation, they are not fully connected with our focus on the quality on innovation,

particularly if there are composition effects in the set of firms performing R&D over the business

cycle. To make a link, we classify industries as having high versus low levels of citation-weighted

patenting by creating an indicator for whether an industry ranks above the median in its 1998

to 2018 average future citation counts to total patents, zero otherwise. Table 4 subsequently

partitions our estimates in columns 4 and 5 based on these two group. Importantly, all of the

effect is coming from industries with higher quality patents; the elasticity is not statistically signif-

icant for other industries ranked below the median in patent quality. This suggests that financial

constraints matter for not only the quantity of innovation, but also the quality.

[INSERT FIGURE 4 HERE]
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We now explore whether reallocation between R&D workers into and out of the labor market

could explain differences in the cyclicality of innovation activities. While we would ideally like

to track the same worker over time and observe their output over the business cycle, these data

are not available. Instead, we exploit variation in employment growth over the business cycle,

differentiating between researchers and non-researchers at a six-digit occupation × CBSA level

between 2005 to 2018. We measure researchers in two ways: using (i) an indicator for whether

the occupation ranks above the median in the earlier index of R&D intensity constructed from

O*NET, and (ii) an indicator for whether the occupation is classified as a science, technology,

engineering, and mathematics (STEM) job from the Bureau of Labor Statistics. Specifically, we

consider regressions of occupation × CBSA year-to-year employment growth on an indicator for

whether the occupation is classified as research, CBSA year-to-year employment growth, and their

interaction, conditional on at least CBSA, occupation, and year fixed effects.

Table 6 documents these results. While we find that increases in CBSA employment growth

are associated with robust increases in occupational employment growth in the same CBSA area,

there is no evidence of an asymmetry in the cyclicality for either high R&D intensity or STEM

jobs. Columns 1 and 3 present the results using fixed effects on occupation, CBSA, and year,

whereas columns 2 and 4 also control for occupation × year fixed effects, thereby exploiting the

exposure of a given occupation to different regional shocks. The latter approach would control

with time-varying shocks to skill prices that could be unique to occupation, but idiosyncratic

across locations. Given that we find no evidence of asymmetric cyclicality, we conclude that it

is unlikely that higher skilled workers would invest more in longer-term projects simply due to

differences in their sensitivity to the business cycle.
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[INSERT TABLE 6 HERE]

Finally, we turn towards evidence on the potential for selection effects between public and

private institutions. Drawing on the NSF data covering high skilled workers, we are reminded

of the stark differences between public and private institutions in the allocation of time towards

research displayed in Table 2. For example, whereas 27% and 17% of workers in the private sector

allocate over 10% of their time per week towards applied and basic research, these proportions are

33% and 25% in the public sector. In this sense, although the allocation of time towards applied

research only varies by a few percentage points, public sector workers are over twice as likely to

allocate more than 10% of their time towards basic research.

Motivated by these differences in time use, we investigate whether they also vary over the

business cycle by estimating similar regressions of the form:

lkiot = γzot + φPRIViot + δ(zot × PRIViot) + ωwit + βXiot + g(t) + εit (1)

where lk denotes whether individual i in five-digit occupation o in year t allocated over 10% of

their time towards activity k, z denotes a productivity shock (i.e., five-digit occupation employment

growth), PRIV denotes whether the individual works in the private sector (versus a two or four

year university or government agency), w denotes the individual’s logged salary, X denotes a

vector of individual covariates, and g(t) denotes a polynomial time trend. Included within the

vector of individual covariates, X, are the following variables: a quadratic in age, an indicator

for being male, an indicator for being white, and education fixed effects (bachelors, masters,

professional, normalized to having a PhD/MD). These covariates help mitigate concerns about
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self-selection into different types of jobs (e.g., risk preferences or career aspirations Bozeman and

Kingsley (1998)) that also vary in their sensitivity to business cycle shocks. We measure z using

year-to-year growth in five-digit occupational employment, capturing the heterogeneity in returns

to different tasks over the cycle.

While not included in the baseline regression results, there are also other controls that are

noteworthy to mention for robustness, especially hours worked and firm size. For example, one

concern is that employees simply work longer hours during booms, giving the impression of re-

allocation when really the intensive margin of labor services is expanding. However, controlling

for fixed effects on weekly hours worked and number of weeks worked (four bins each) produces

quantitatively indistinguishable coefficient estimates. Similarly, another concern is that larger or-

ganizations are less sensitive to business cycle shocks, but individuals move between smaller and

larger organizations over the cycle. While job mobility is generally common, it is less common

among high-tech workers who often have considerable firm-specific investments. These consider-

ations are examined later when studying the moderating effects of financial constraints. Since

our equation is estimated using a weighted probit in the baseline specification, occupational fixed

effects are not included (Lancaster, 2000). While the private and public sectors produce different

kinds of output, we assume that time use at a task-level is comparable between the two sectors.

One of the potential concerns with our strategy is that it might fail to fully control for com-

position effects. Given that organizations tend to upskill during recessions (Hershbein and Kahn,

2018), the return to a marginal hour of work among private sector organizations may be higher if

these organizations are also more likely to terminate less productive workers. Then, greater pro-

cyclicality in the time allocated towards R&D activities may simply reflect a shifting composition

towards more productive workers. While this is possible, the fact that an individual’s salary is



23

included as a control helps mitigate concerns about composition effects. Nonetheless, one way

of addressing this identification problem involves the inclusion of person and year fixed effects,

exploiting variation in a fixed individual exposed to different labor market conditions.9

Table 5 documents the main results. Consistent with the first proposition, private sector

(business) workers allocate 3.4-4.5% less time in applied research and 7.9-8.1% less time in basic

research activities. Both basic and applied research respond similarly to cyclical shocks, consistent

with macroeconomic models with endogenous growth (Akcigit et al., 2019). In contrast, private

sector workers, not surprisingly, allocate much more time towards standard business activities,

including 5.8-7.6% more time in development activities, 10.1-13.9% in design, 6.1% in production,

and 14% in sales. These results are consistent with research on sorting into public versus private

sector jobs based on a willingness to pay for autonomy and conducting research (Stern, 2004;

Roach and Sauermann, 2014).10

Time allocated towards research in the private sector is overwhelmingly procyclical, whereas

it is countercyclical or possibly acyclical in the public sector. For example, a one percentage point

(pp) rise in occupational employment growth is associated with a 0.392pp decline in time allocated

towards basic research in the public sector. The coefficient only declines slightly in magnitude to

0.33pp after introducing salary as a control. Time allocated towards basic research is also relatively

countercyclical, but I fail to reject the null that it is acyclical in the public sector. However, a one

pp rise in employment growth is associated with a 0.255pp (=0.647-0.392) to 0.308pp (=0.638-
9Estimating a non-linear model with individual fixed effects introduces the incidental parameters problem (Lan-

caster, 2000). However, when estimating using a linear probability model, we obtain qualitatively similar results.
For example, time allocated towards research activities is still procyclical among private sector workers, but coun-
tercyclical among public sector workers. However, these marginal effects are not statistically significant.

10One concern with these result is that employees do not have discretion over their allocation of time. While high
skilled workers are more likely to have discretion since they cluster in occupations that exhibit greater autonomy
and non-cognitive tasks, whether the employee or employer decides the set of tasks to prioritize is not germane to
the empirical resultâall that matters is that there is some cyclicality.
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0.33) increase in time allocated towards applied research without and with salary as a control.

Time allocated towards basic research in the private sector is also highly statistically significant

with a precise marginal effect of 0.31 for a 1pp rise in employment growth.

Other business-based activities exhibit countercyclical time use among R&D workers. For ex-

ample, a 1pp rise in employment growth is associated with a 0.248pp to 0.340pp decline in time

allocated towards development activities in the public sector. Similarly, a 1pp increase in em-

ployment growth is associated with a 0.689pp to 0.806pp decline in time allocated towards design

activities in the public sector, but only a 0.203pp (=-0.689+0.486) to 0.32pp (=-0.806+0.486)

decline in the private sector (when salary is not included as a control). Moreover, production

activities are actually procyclical in the private sector with a net gradient of 0.067pp (0.449-0.382)

and 0.078pp (0.453-0.375) increase for a one pp rise in employment growth.

How should we interpret these results? On one hand, these heterogeneous cyclicalities of

time use might reflect reallocation of tasks within organizations over the business cycle. On the

other hand, they might reflect differences in the composition of workers in the firm. While the

inclusion of salary and individual demographic controls help rule out concerns about the strength

of incentives over the cycle, it also behaves as an implicit control for ability, on top of the inclusion

of detailed demographic controls. Nonetheless, there are two points worth noting. First, while

there is empirical evidence that organizations upskill over the business cycle (Hershbein and Kahn,

2018), unobserved shocks to the demand for higher skilled workers would, if anything, bias us

against finding these results since there is, at the margin, slight negative selection into the private

sector among knowledge workers (Stern, 2004). Second, one way to gauge the role of composition

effects is by comparing the marginal effect of the interaction with and without controls. Compared

to the baseline specification, which suggests that a 1pp rise in employment growth is associated
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with 0.255, without the controls the corresponding increase is 0.104pp (=0.485-0.381), which is

consistent with the aforementioned direction of potential bias.

[INSERT TABLE 5 HERE]

Put together, we interpret these results as providing evidence of a composition effect in the

inputs to the production of knowledge over the business cycle, which results at least in part due

to financial constrained faced more acutely in the private sector. For example, our first piece of

evidence suggests that financially constrained firms contract their R&D more than their counter-

parts, particularly in response to employment declines. These effects are coming almost exclusively

from industries with higher quality innovation. Our second piece of evidence suggests that private

sector workers allocate their time more elastically over the business cycle, particularly in business

activities, whereas public sector workers exhibit more acyclical responses. The combination of a

reallocation of tasks among individuals in public and private firms has the potential to explain the

counter-cyclicality of innovation. We find no evidence of the third potential mechanism, which

speculates that employment fluctuations might affect researchers more (the extensive margin of

innovation) and make them even more risk averse (the intensive margin of innovation).

5 Conclusion

Though researchers have found that patent counts or R&D expenditures are procyclical, this

prediction is at odds with the theory of creative destruction where firms invest more resources in

research during periods of lower demand. It is possible that these results are in contrast because

resources are also constrained in recessions, which limits the amount of capital the firm can devote

to research. If the “resources effect” dominates the “opportunity cost effect,” the empirical results
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that innovation is procyclical are logical. The number of patents may decrease during recessions

due to resource constraints, but the type of research that firms do may change.

We investigate the relative importance of innovations created during recessions and booms, ex-

ploiting within-industry variation in business cycles, rather than national business cycles, enabling

us to disentangle the effect of aggregate changes in funding for innovation (resources) from effects

of shifts in aggregate demand. We find that the number of patents is not correlated with industry

dynamics after controlling for changes in innovation funding at the national level. However, the

value of patents in future innovation does change depending on industry conditions: more influen-

tial innovations are produced during industry busts. We find that patents produced during busts

share a greater similarity to future patents produced in the industry and that patents produced

during busts generate a greater amount of citations than those produced during booms. This sug-

gests that although resources are constrained, firms may work on riskier projects with potentially

higher returns because the opportunity cost of failure has decreased. Furthermore, these results

are driven by a combination of financial constraints and composition effects where private (public)

sector R&D inputs are more (less) cyclical and more (less) focused on applied research.



27

Tables and Figures

Figure 1: Distribution of R&D Task Intensity, 2004-5 and 2015-16
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Mean z-score Intensity in 2004-05 (2017-18) = -0.14 (0.11)

Source: Notes.—Sources: O*NET (2004-2016). The figure plots the distribution of research and development (R&D) task intensity in
a standardized z-score format. The index is based off of the “importance” (IM) weight in O*NET collected for all task statements that
have either the words “research” or “development” in their description.
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Figure 2: Conceptual Map of the Product Cycle over the Business Cycle

Source: Authors’ calculations. The figure displays the five stages of a product life cycle as a function of business cycle conditions.

Table 1: Industry Characteristic Descriptive Statistics

Sample Size Mean Median SD Min Max
Year 2210 1997 1997 9 1980 2015
Industry Relative Valuation 2210 0.004 0.002 0.06 -0.76 2.80
Industry Relative Investment 2210 0.031 0.02 0.71 -7.11 11.64
Real GDP Growth 822 0.67 -0.25 2.10 -0.89 9.44
Employment Growth 790 0.003 0.009 0.05 -0.5 0.5
Total Patents 2210 1831 196 5503 0 63017
Average Citations 2210 17.56 13.07 19.52 0 174
Average Patents Cited 2210 15.33 15.04 3.89 1 47
Average Similarity to Cited Patents 2210 0.27 0.28 0.06 0 0.56
Average Similarity to Citing Patents 2210 0.26 0.26 0.06 0 0.94

Notes.—Source: Compustat and Patentsview. Observations are recorded at the three digit NAICS/year level and are recorded between
1980 and 2015. The calculations relating to patents created in each industry-year are described in Section 3 and in the Appendix.



29

Table 2: NSF Data Descriptive Statistics: Comparison of Private v. Public Sector

Sample Private Public

Mean SD Mean SD Mean SD
Demographics
Male 0.56 0.50 0.60 0.49 0.47 0.50
Age 43.8 10.6 43.7 10.5 44.0 10.8
White 0.76 0.43 0.76 0.43 0.74 0.44
Children, # 2.27 0.92 2.28 0.92 2.24 0.93
Bachelor’s Degree 0.57 0.50 0.61 0.49 0.47 0.50
Masters Degree 0.29 0.45 0.25 0.43 0.38 0.48
Professional Degree 0.09 0.29 0.10 0.30 0.06 0.25
PhD Degree 0.05 0.22 0.03 0.17 0.09 0.29
Years of Schooling 17.15 1.56 17.00 1.43 17.50 1.78
Work
Salary 67275 40349 72119 42345 56214 32788
Hours Worked 1807 524 1838 518 1735 530
Job Satisfaction
Overall Job Satisfaction 0.01 0.72 -0.00 0.73 0.05 0.69
Career Opportunities -0.01 0.92 0.02 0.92 -0.07 0.90
Benefits -0.06 0.93 -0.12 0.94 0.07 0.87
Independence -0.00 0.72 0.02 0.72 -0.04 0.73
Responsibility 0.02 0.75 0.01 0.75 0.04 0.74
Salary -0.00 0.85 0.06 0.83 -0.14 0.87
Job security 0.02 0.85 -0.02 0.87 0.11 0.82
Social impact 0.01 0.80 -0.09 0.84 0.24 0.65
Job Activities
Development 0.27 0.44 0.29 0.45 0.23 0.42
Design 0.24 0.43 0.27 0.45 0.16 0.37
Employee Relations 0.29 0.46 0.30 0.46 0.28 0.45
Management 0.59 0.49 0.60 0.49 0.56 0.50
Maintenance 0.14 0.35 0.17 0.37 0.09 0.29
Quality Management 0.28 0.45 0.31 0.46 0.20 0.40
Sales 0.33 0.47 0.40 0.49 0.19 0.39
Professional Services 0.39 0.49 0.40 0.49 0.35 0.48
Teaching 0.32 0.47 0.22 0.41 0.56 0.50
Computer Services 0.26 0.44 0.28 0.45 0.20 0.40
Supervising 0.44 0.50 0.47 0.50 0.37 0.48
Applied Research 0.29 0.45 0.27 0.44 0.33 0.47
Basic Research 0.20 0.40 0.17 0.38 0.25 0.43
Observations 492730 298373 194357

Notes.—Source: National Science Foundation Survey of College Graduates (1997-2013). The table reports the means and standard
deviations associated with various demographic, work, job satisfaction, and job activity characteristics. Hours worked is made into
a continuous variable by taking the product of different weekly hours worked and annual weeks worked groups. Hours worked is
partitioned into the following four groups: 20 or less, 21-35, 36-40, and over 40; weeks worked is partitioned into the following four
groups: 1-10, 11-20, 21-39, and 40-52. Job satisfaction indices are reported as z-scores, which are created by standardizing the indices,
which range on a scale of one to four. Job activities are indicator variables that denote whether the worker allocates at least 10% of
their time in the corresponding activity. The sample is restricted to individuals between the age of 25 and 65 years old and observations
are weighted by the survey sample weights.
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Table 4: Examining the Presence of Financial Constraints Over the Business Cycle

Dep. var. = Research and Development Growth
(1) (2) (3) (4) (5)

Employment Growth .738∗∗∗ .689∗∗∗ .356∗∗∗ .196 .056
[.207] [.206] [.125] [.374] [.443]

× Financial Constraint .563∗∗ .773∗∗∗ .022
[.260] [.265] [.511]

Sample Size 23923 23828 23828 14575 9253
R-squared .20 .20 .20 .22 .19
Firm FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Firm Controls No Yes Yes Yes Yes
Sample All All All High Patent Low Patent

Notes.—Source: Hoberg and Maksimovic (2015), Compustat (1997-2015), Bureau of Economic Analysis (BEA). The table reports
the coefficients associated with regressions of year-to-year research and development (R&D) growth (trimmed at the 1st and 99th
percentiles) on year-to-year growth in three-digit NAICS industry employment, an indicator for ranking above the median in financial
constraints, and their interaction, conditional on firm controls (logged revenue, employment, and property, plant, and equipment). The
measure of financial constraints comes from Hoberg and Maksimovic (2015) for each firm-year: “firms with higher values are more
similar to a set of firms known to be at risk of delaying their investments due to issues with liquidity.” We define industries as having
high citation-weighted patenting if their average ratio of citation counts to total patents ranks above the median between 1998 and
2018. Standard errors are clustered at the three-digit NAICS level and observations are unweighted.
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Table 6: Examining the Potential for Reallocation Among Researchers Over the Business Cycle

Dep. var. = Occupation x Metro Employment Growth
(1) (2) (3) (4)

CBSA Employment Growth .701∗∗∗ .705∗∗∗ .706∗∗∗ .710∗∗∗

[.054] [.055] [.050] [.050]
× R&D Occupation -.016 -.014

[.078] [.078]
× STEM Occupation -.112 -.108

[.132] [.132]
Sample Size 149834 149833 149834 149833
R-squared .02 .02 .02 .02
CBSA FE Yes Yes Yes Yes
SOC FE Yes Yes Yes Yes
SOC x Year FE Yes Yes Yes Yes
hassocYear No Yes No Yes

Notes.—Source: Bureau of Labor Statistics (BLS) Occupation Employment Statistics, BLS classification for science, technology, en-
gineering, and mathematics (STEM) employment, and O*NET index of R&D intensity (authors’ calculations). The table reports the
coefficients associated with regressions of year-to-year six-digit occupation × CBSA employment growth on an indicator for whether the
occupation is classified as research (either above the median R&D intensity or STEM), and their interaction, conditional on occupation,
CBSA, and year fixed effects. Standard errors are clustered at the CBSA-level.
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Online Appendix

A Constructing Measures of Industry Booms and Busts

Following methods used by Hoberg and Phillips (2010), we identify industry booms and busts

using three proxies. These proxies are generated using firm level data from Compustat. The three

proxies used are: (1) industry valuation relative to predicted valuation, (2) new investment to the

industry relative to predicted investment, and (3) financing at the industry level. These variables

are influenced both by beliefs about the future profitability of an industry (relative valuation) as

well as current activity (new financing and investment).

The relative valuation and investment in the industry is generated through the same valuation

model used in Hoberg and Phillips (2010), updated from Pastor and Veronesi (2003). We use a

ten year lagged sample to estimate different coefficients for each industry and year, subsequently

generating the estimates of valuation and investment using the current year’s data in Compustat.

Specifically, the procedure has three steps:

First, we estimate the PV valuation model using data from year t-10 to t-1 for all firms in

industry j. We the following for each industry in an unbalanced panel with random effects:

log(M/B)iτ = α + βAGEiτ + γDDiτ + δLEViτ + φ log(SIZE)iτ + ψV OLPiτ + ξROEiτ (2)

where log(M
B

) is the log of the market to book ratio, Age is the negative reciprocal of one plus

firm age, DD is a dividend dummy, LEV is the firm’s leverage, SIZE is the log of total assets,



35

current firm return on equity (ROE), and V OLP is the volatility of the firm’s profitability. These

variables are calculated from Compustat items following Pastor and Veronesi (2003) and Fama

and French (1993). Following both Hoberg and Phillips (2010), we drop firm observations whose

market equity, book equity, and total assets are smaller than one million, market to book ratios

outside of the range (0.01,100), and we winsorize VOLP and ROE at the 1/99% level in each year.

Second, from the estimation in the first step, we derive a different set of coefficients for the

valuation equation for each industry and year.11 These coefficients are then used to compute

predicted values for the firm market-to-book ratio in each year. This imposes the assumptions

that the firm’s predicted valuation is a function of its current characteristics and the industry-

specific prices of these characteristics from previous years.

Third, we calculate the relative valuation by subtracting the predicted firm valuation in year

t from the second step from the log of the firm’s actual market to book value in year t. We then

winsorize at the 1/99% level for each year and take the average relative valuation over all firms in

the industry. Relative investment at the firm and industry level is calculated as follows:

log(INV EST/PPE)iτ−1 = α + βTOBINQiτ + γROEiτ + δDDiτ+

φAGEiτ + ψLEViτ + ξV OLPiτ + ζ log(SIZE)iτ
(3)

We define ROE, DD, AGE, LEV , SIZE, and V OLP as in the valuation model. Lagged

Tobin’s Q is also included here but not in the valuation model. After running the time series

estimations and getting the estimates of the coefficients for each industry-year, this model generates
11The set of coefficients for each year t and industry j is a function of the characteristics and valuations of firms

in that industry from years t-10 to t-1.
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predictions of investment for each firm in each year based on the firm’s characteristics and the

historic returns to these characteristics in investment. We define relative firm investment as the

actual investment subtracted from the predicted investment in each year. Then, we aggregate to

the industry level by averaging over all firms in each year.

Finally, total new financing to the firm in a year is defined as the sum of net equity issuing

activity and the sum of net debt issuing activity divided by the firm’s assets. This is averaged

over the industry level to get new financing to the industry in each year.
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