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Abstract

A large and increasing number of patents are declared by their owners to be

potentially essential to technology standards developed in open Standards Develop-

ment Organizations (SDO). Policy makers and many stakeholders view the difficulty

to identify actual Standard-Essential Patents (SEP) among these declared potential

SEPs as a significant concern. Reliable information on the numbers of actual SEPs

held by different firms is often seen as important for the determination of fair,

reasonable, and non-discriminatory (FRAND) licensing terms for SEP portfolios.

We compare the relative merits of three different approaches to the estimation of

the numbers of actual SEPs held by different firms: analyses of random samples,

predictive modeling using observable patent characteristics, and a more superficial

individual examination of every declared SEP. Superficial checks of every declared

SEP and predictive modeling may achieve greater precision than simple sampling,

but are susceptible to systematic bias. We recommend sampling for the estimation of

essentiality ratios in large firm portfolios of declared SEPs; while predictive modeling

is useful for the analysis of larger numbers of smaller SEP portfolios. For small

portfolio sizes, a light-touch review of all declared SEPs may also be appropriate,

provided that the assessment error is generally zero-centered.
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1 Introduction

Standardized Information and Communication Technologies (ICT) are undergoing rapid

innovation, and expanding into an increasing number of industries. A whole new spec-

trum of products and services will be interconnected and interoperable, altering how we

interact, work and communicate with the world around us. This development relies on the

standardization of innovative - and often patented - technologies in open, consensus-based,

standards-development organisations (SDOs). Therefore, there is an increasing number

of ICT standards that are subject to standard essential patents (SEPs).1 SEPs claim

inventions that are necessary for any implementation of the standard.

SDOs require companies participating in standards development to disclose any po-

tential SEPs, and indicate whether they are willing to license those patents that are

essential under fair reasonable and non-discriminatory (FRAND) terms to implementers

of the standard. SEP declarations thus primarily aim to ensure that all SEPs are subject

to a licensing commitment pursuant with the SDO’s patent policy. Increasingly, these

declarations of potential SEPs are however also used by implementers of a standard to

obtain information on the patents for which they may require a license.

Given the large number of declarations of potential SEPs for some standards, im-

plementers and SEP holders usually negotiate licenses for entire portfolios of SEPs. In

some cases, the value of a license is determined by reference to the overall value of the

standardized technology, in combination with the share of that value created by the

patented technology in the portfolio.2

The apportionment of the value of a technology standard to different SEP portfolios

is subject to significant controversy. It is generally understood that the technological

significance of individual patents is very heterogeneous. Nevertheless, there is no agreement

on methods that could reliably indicate the specific value of individual patents. As a

practical matter, some form of patent counts is therefore often used in the determination

of licensing terms.3 In this context, policy makers such as the European Commission are

calling for greater transparency on the number of patents owned by different firms that

are actually essential to technology standards.4

1Prominent examples of ICT standards subject to numerous SEPs are 4G and 5G cellular communication
standards, WiFi (802.11), Bluetooth, near field communication (NFC) and radio frequency identification
(RFID).
2An example of a court decision relying on such a top-down approach to the valuation of SEP licenses is
the ruling of the District Court for the Northern District of Illinois in Innovatio (U.S. District Court of
the Northern District of Illinois, Eastern Division, In re Innovatio IP Ventures, LLC Patent Litigation,
Case No. 11 C 9308). While decisions relying exclusively or primarily on top-down approaches to SEP
license valuation remain the exception, a larger number of decisions have used top-down approaches as
complements to more traditional approaches (i.e. analyses of comparable licenses), e.g. the UK High
Court in Huawei v Unwired Planet (UK High Court of Justice, Unwired Planet International -v- Huawei
Technologies and ors, [2017] EWHC 711

3In Unwired Planet v. Huawei, Judge Birss found that ”There was ample evidence before me that apart
from Ericsson [...], parties negotiating SEP licences in fact use methods which are based on patent
counting. That is evidence which supports a finding that a FRAND approach to assessing a royalty
rate is to engage in some kind of patent counting. Indeed when one thinks about it some sort of patent
counting is the only practical approach at least for a portfolio of any size.” ([2017] EWHC 711 at 182)

4In 2017, the European Commission noted that ”Evidence points to the risk of broad over-declarations
and makes a strong case for more reliability with respect to SEP essentiality.” European Commission,
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While databases of declarations of potential SEPs are often used as a starting point,

and in some cases stakeholders erroneously use counts of potential SEPs as a measure of

actual SEPs owned by different firms, these databases include numerous patents that are

not actually essential. Different studies have produced different estimates of the share of

actual SEPs among declared SEPs, and have often indicated that these shares may vary

significantly between different firms.5 In complex licensing disputes, the share of actual

SEPs among different firms’ declared (potential) SEPs has been a particularly thorny issue

of contention.6

In view of increasing transparency and reducing transaction costs in the licensing of

SEPs, different approaches to the assessment of the number of truly essential patents in

different portfolios of declared SEPs are currently being discussed. One possible approach

is a third-party examination of every declared SEP. Bekkers et al. (2020) report the results

of a pilot project based on an eight-hour analysis of each declared SEP by patent examiners,

and propose generalizing such individual essentiality assessments to the population of

declared SEPs. A second approach is to carry out in-depth essentiality assessments within

randomly drawn samples of declared SEPs, and to extrapolate the observed essentiality

ratios in different firms’ portfolios to the larger population. A third approach is to use

explanatory variables to predict whether declared SEPs are actually essential (Brachtendorf

et al., 2020). The relationship between observable variables and essentiality can be assessed

in a random sample of declared SEPs submitted to essentiality checks, and then be used

to make predictions about essentiality rates in the general population.

While different studies present different individual approaches to the assessment of

essentiality rates in larger populations of declared SEPs, to the best of our knowledge,

there currently is no study that compares the merits and downsides of these different

approaches. In this paper, we use technical experts’ essentiality assessments for a randomly

drawn sample of 1,000 patent families declared to be potentially essential to a 5G TS

to make different predictions of essentiality rates by firm portfolio in the population of

declared 5G SEPs (currently comprising approx. 25,000 patent families).

”Setting out the EU approach to Standard Essential Patents” COM(2017) 712 final. In its more recent
”Intellectual Property Action Plan” of 2020, the Commission went one step further: ”The Commission
will for instance explore the creation of an independent system of third-party essentiality checks in view
of improving legal certainty and reducing litigation costs.” European Commission, ”Making the most of
the EU’s innovative potential - An intellectual property action plan to support the EU’s recovery and
resilience”, COM(2020) 760 final.

5Goodman and Myers (2005) e.g. found that 157 of 732 (21.4%) analzyed patents declared essential
to 3GPP were judged to be ”probably essential” by independent experts. In January 2010, Fairfield
Resources International, Inc. analyzed 1,115 patents declared as essential to 3GPP Release 8 (LTE and
SAE). Of these 210 families, 105 families (50%) have at least one patent judged essential or probably
essential. Cyber Creative Institute, in June 2013 evaluated 2,129 patents declared essential to LTE,
and deemed that 56.0% of the analyzed patents were essential (”The invention contained in the patent
matches the standards”), while 29.0% ”partially match the standard”. Stitzing et al. (2017) report results
of a PA consulting analysis; finding an average essentiality rate of 35.2% in a sample of 3,917 US patents
declared essential to LTE.

6Recent cases in which determinations of essentiality shares played a significant role include the (vacated)
decision by the U.S. Disctrict Court of the Central District of California, in TCL v. Ericsson (TCL’s
expert testified in February 2017 that according to a Concur IP analysis, 37.3% of 2,600 evaluated patent
families declared essential to 2G, 3G, and 4G cellular communication technologies were essential); and
the Unwired Planet v Huawei at the UK High Court.
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We use the sample to estimate a predictive model, using a very comprehensive set

of variables, including a semantic similarity score between patents’ independent claims

and the text of the TS section, as well as other variables (e.g. technical contributions

to standards development, attendance in standards meetings, citations between patents

as well as between patents and standards documents). As a benchmark, we also use the

sample to directly observe essentiality rates in different firms’ SEP portfolios, which we

then extrapolate to the larger population.

Based on these analyses, we compare the out-of-sample performance of the different

approaches. We therefore randomly split our sample of thousand patents in two subsamples

of equal size, and use one subsample to predict essentiality rates in the other. Repeating

this numerous times with different randomly drawn subsamples, we assess a method’s

performance along different dimensions, and in particular precision and bias. Precision is

the mean absolute value of the prediction error, whereas bias is the mean of the deviation

between predicted and actual rates per firm (a method is unbiased if the mean is zero,

meaning that the prediction is just as likely to over-as to under-estimate the essentiality

rate in an individual firm’s portfolio).

Just like any other sampling-based approach, our predictions for essentiality rates in

firms’ portfolios of declared 5G SEPs hinge on the accuracy of the assessments of the

sample patents. Strictly speaking, our analysis does not reveal the performance of different

methods to predict ”true” essentiality rates of declared SEPs (which are unobserved), but

the capacity of different methods to accurately predict what the outcome of a particular

assessment would be if carried out in the larger population of patents. As true essentiality

(and thus assessment error) is unobserved, we simulate assessment errors to compare

the implications of assessment uncertainty for the performance of different methods of

extrapolation. We also use appropriately calibrated simulations of assessment errors to

compare the performance of higher quality assessments in a smaller sample with lower

quality assessments of larger samples or entire populations.

We find that there is a trade-off between precision and bias - while extrapolating

essentiality rates from randomly drawn samples may produce significant prediction errors

(especially for small portfolios, resulting in very small samples), predictive models and

light-touch reviews of every single patent (while sometimes more accurate on average)

have the potential to produce systematic bias. For larger portfolios, however, sampling is

generally both less susceptible to bias and more accurate than the other methods, and

should generally be the method of choice. This also implies that policy makers should

encourage market participants to focus the limited resources available for essentiality checks

on appropriately chosen samples of declared SEPs, rather than requiring or mandating

essentiality checks for entire populations of declared SEPs.

While we compare different methods for the determination of the number and share

of actual SEPs in different portfolios of declared SEPs, we do not analyze whether the

number of actual SEPs should be used for the apportionment of FRAND royalties from a

reasonable aggregate royalty, or whether such apportionment from an aggregate value of

the standard should be undertaken at all. We only compare the relative merits of different

approaches. There remain significant questions regarding the overall usefulness of patent

counting, e.g. whether the value contribution of different SEPs is sufficiently homogeneous

for counts of confirmed SEPs to be meaningful; and whether the aggregate value of a
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standard can be assessed reliably enough for top-down approaches to be viable. We leave

these important questions to future research.

The remainder of this paper is organized as follows. Section 2 presents an overview of

the different approaches to essentiality assessments, including a discussion of the existing

literature.

2 Overview of Different Approaches

In principle, there are at least three families of different approaches to the determination

of essentiality rates in patent holders’ portfolios of declared SEPs: comprehensive patent-

by-patent assessments of all patents, sampling (i.e. in-depth analyses of randomly drawn

samples, and extrapolation of observed essentiality rates in the sample to predicted

essentiality rates in the population), and predictions using other, more readily observable

patent characteristics as variables, which can be used to ”train” predictive models, e.g.

logistic regression models or tree-based machine learning approaches, in a randomly drawn

sample to predict essentiality rates in the population.

2.1 Patent-by-patent assessments of individual patents

Patent-by-patent essentiality analyses of large populations of declared SEPs are currently

confined to specific settings, such as patent pool licensing - for antitrust reasons, patent

pools generally aim to ensure that only actual SEPs are included in the pool license.

Pool licensing administrators recruit independent experts to conduct essentiality checks

of potential SEPs submitted for inclusion into the pool licenisng program. The incentive

structure and governance of pools is often viewed as conducive to objective examinations.7

Pools also charge patent holders significant fees for essentiality checks, thus providing

technical experts with sizeable resources - Bekkers et al. (2020) report that pools charge

between 5,000 and 10,000 Euro per patent for such an assessment, on average.

The cost of applying this relatively thorough standard of examination to every declared

SEPs appears prohibitive.8 In spite of their price tag, these essentiality checks are unlikely

to fully resolve uncertainty regarding the actual essentiality of individual declared SEPs,

as the essentiality of SEPs checked by pools’ experts can be, and relatively frequently is,

subject to additional challenges in court.9

7In its 1999 Business Review Letter of the DVD6C patent pool, the U.S. Department of Justice e.g.
stated that ”each Licensor will benefit monetarily from the exclusion of other Licensors’ non-’essential’
patents and accordingly has a strong incentive to encourage the expert to review other Licensors’
patents critically, and to bring to the expert’s attention any patents that have ceased to be ’essential.’”
https://www.justice.gov/sites/default/files/atr/legacy/2012/08/01/2485.pdf

8Baron and Pohlmann (2018) identified 139,620 different patents from various SDO databases. The iplytics
database currently includes more than 180,000 declared SEPs. There may be large numbers of additional
potential SEPs, as many SDOs allow for blanket declarations instead of requiring specific disclosures of
individual patents. Applying the lower end of the range of the fees currently charged by pools (5,000
USD) to an estimated number of 200,000 of potential SEPs yields a cost erstimate of 1bn USD for the
existing stock of potential SEPs alone.

9To the best of our knowledge, there is no empirical evidence on how the frequency and the outcomes of
essentiality challenges to pooled SEPs in court differ from those to other declared SEPs.
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There are at least two potential mechanisms for reducing the cost of generalized

essentiality checks of individual patents: first, one may conduct less costly (but still

objective) essentiality assessments. Bekkers et al. (2020) conducted a pilot study of

essentiality assessments at an intermediate level of rigor - professional patent examiners

were asked to provide an analysis of each declared SEPs in a sample after an analysis of

not more than 8 hours.10 Generalizing such assessments would still involve more than

1 million hours of highly skilled labor for the assessment of the existing stack of SEP

declarations, alone.

At the same time, placing time and resource constraints on examiners introduces

additional measurement error - Bekkers et al. (2020) find that assessments in their studies

were consistent with more comprehensive assessments by pool examiners in approx. 75%

of the cases. This incremental measurement error would result in misclassification of

approximately 50,000 patents as essential or non-essential (in the existing stock of declared

SEPs alone), so that assessments of any individual patents would face challenges and appeals.

Whether such assessments would result in more trustworthy estimates of the overall number

of actual SEPs held by different firms depends on how assessment inconsistencies are

distributed between different firms’ patent portfolios.

Second, one may apply generalized checks to non-random subsets of the population

of declared SEPs. The contribution of the EU Commission’s expert group on SEPs e.g.

includes proposals to check one patent per family, instead of all declared SEPs (SEPs-

Expert-Group, 2021). While lower than the number of declared SEPs, the number of

declared SEP families for all SDOs is still very significant.11 Furthermore, as families are

defined with respect to common priority documents, whereas essentiality is defined by the

relationship between the patent’s claims and the standard specifications, one patent family

may include both essential and non-essential individual patents. Applying the result of an

essentiality assessment of an individual patent to its entire family is thus susceptible of

creating an additional error.12

Another policy proposal (also included in the report of the SEPs-Expert-Group (2021))

is to only assess potential SEPs selected by patent holders, requiring that only checked

SEPs may be asserted against implementers. It is unclear how many declared SEPs patent

holders would choose to submit for assessment under such a policy. In contrast to other

patents, few declared SEPs are allowed to lapse early (Baron and Delcamp, 2012; Baron

and Pohlmann, 2018). There thus does not seem to be that many declared potential

SEPs that quickly and unambiguously turn out to be non-essential. Furthermore, many

10By comparison, experts assessing essentiality ratios in selected samples in the context of court cases
reported to have spent eleven hours per patent preparing claim charts and determining patent essentiality
(Cooper (2019), cited from Mallinson (2021)); and Ericsson testified that it spent 50 hours per patent
preparing claim charts in TCL v. Ericsson (Mallinson, 2021)

11There are different definitions of patent families, which all regroup patents that share one or several
priority documents. Using the particulary broad inpadoc patent family definition, Baron and Pohlmann
(2018) identified 38,800 different patent families in their data (implying a ratio of 3.6 declared SEP per
declared SEP family). ETSI, using its own family definition, states that its own database currently
includes more than 62,000 declared SEP families. https://ipr.etsi.org/ as of 1 November 2021

12If patents subjected to assessments are randomly drawn within each family, this additional error is a
random sampling error. If, as suggested in the contribution of the SEPs-Expert-Group (2021), family
members are selected using non-random criteria such as the nationality or filing date of the patent, this
procedure may also generate systematic bias.
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SEPs asserted in court are found to be non-essential, including SEPs asserted by patent

holders with very large portfolios of declared SEPs, who surely possess at least some truly

essential patents that could have been asserted instead (Lemley and Simcoe, 2018). This

fact suggests that patent holders themselves do not know which of their declared SEPs are

actually essential. If patent holders themselves are uncertain which of their patents are

truly essential, the potential for self-selection into a costly examination process to ”weed

out” non-essential patents is limited.

Patent-by-patent essentiality assessments of declared SEPs are thus subject to signifi-

cant limitations. The cost of very thorough assessments of every declared SEP appears to

be prohibitive. While limiting checks to one patent per family and/or only those declared

SEPs self-selected by their owners may reduce the number of required assessments, the

number of patents to be checked would likely still be significant.13 Furthermore, the

non-random nature of these selections may introduce statistical bias. Reducing the cost of

the assessment by reducing the stringency of the assessment would introduce additional

measurement error, which may result in further loss of precision and systematic bias.

2.2 Sampling

As an alternative to checking every declared SEP (or one patent for every declared SEP

family), it is possible to assess the essentiality of smaller, randomly drawn samples of

declared SEPs, and to extrapolate the share of actual SEPs in different firms’ portfolios of

declared SEPs in the sample to the entire population. This approach was e.g. recommended

in studies prepared for the European Commission (Regibeau et al., 2016), and has repeatedly

been used in the resolution of licensing disputes through litigation.

Existing applications of sampling approaches in SEP dispute resolution have been

subject to significant criticisms.14 Nevertheless, these criticisms of individual assessments

must be distinguished from an analysis of the general merits of sampling approaches.

Holding the total resources allocated to an essentiality assessment constant, assessing

randomly drawn sample rather than the entire population of interest allows an expert to

allocate greater efforts to the analysis of each individual patent. In principle, more thorough

assessments can be presumed to be subject to lower measurement error - while even a

very thorough assessment may be subject to measurement error, placing resource and time

constraints on the assessment process is likely to create an incremental measurement error.

13Assuming that patent owners would submit the (vast) majority of the declared SEP familiesit is
reasonable to expect that more than 50,000 patents would need to be checked, for an assessment of
essentiality in the existing stock of declarations alone.

14In the TCL v Ericsson case, TCL commissioned subject matter experts to conduct a study of a random
sample of 2,600 ETSI declared 2G, 3G and 4G patents. It was calculated that the commissioned experts
must have spent on average only about 20 minutes per patent and charged on average $100 per patent
for their assessment. The time spent and amount paid for SEP determination for this litigation case
very much differed to fees charged and to time spent for essentiality checks e.g. by experts appointed
by pools. These resources appear incompatible with a thorough analysis of the relationship between a
patent and complex technical specifications that may have up to 600 pages and hundreds of sections.
Another critcism of the approach concerned the potential for explicit bias of the experts who conducted
the patent mapping. The experts retained by TCL knew which side they were on.
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Sampling on the other hand creates a sampling error - the error that results from

extrapolating information from a sample to the entire poplulation from which the sample

is drawn. Conducting more thorough assessments of a randomly drawn sample rather than

a more cursory assessment of every member of a population thus trades measurement error

for sampling error. Which of these methods is more accurate on average partly depends

on the relationship between assessment effort and measurement error, i.e. by how much

the accuracy of the assessment of an individual patent increases in effort.

More importantly, the usefulness of light-touch assessments of every individual patent

depends on the distribution of assessment errors. Measurement errors may lead to

systematic biases between different firms’ portfolios for at least three reasons: first,

experts may give systematic preference to the patents of a certain patent holder (e.g. the

firm paying for the assessment); second, Type I errors (a non-essential patent is found

to be essential) and Type II errors (an essential patent is found not to be essential) may

correlate with different patent characteristics that are non-randomly distributed over firms’s

portfolios;15 and third, expert assessments may generally over- or under-estimate the true

share of actual SEPs. The percentage of declared SEPs found to be essential in different

studies varies widely,16 suggesting that - depending on the study’s methodology and exact

criteria of essentiality that are applied - essentiality checks may be overly optimistic or

pessimistic about patents’ actual essentiality, on average.17 This may produce biases in

the assessment of different firms’ portfolios if uncertainty regarding patents’ essentiality

differs between firms.18

While at least part of measurement error is likely to be noise, measurement error is

thus likely to have a systematic component, which does not vanish when the size of the

sample increases. This systematic error (statistical bias) may systematically favor one

firm over another. Sampling error, by contrast, is axiomatically unbiased - it does not

systematically favor one firm over another. Compared to a cursory assessment of every

single patent, an estimate based on the rigorous assessment of a randomly drawn sample,

while subject to an additional sampling error, is less subject to this potentially systematic

measurement error, and hence less susceptible to bias.

Sampling errors, however, may get very large. While Regibeau et al. (2016) contend

that assessments of a sample comprising merely 30 patents may produce adequately precise

estimates of the essentiality ratio in the population from which the sample was drawn,

15e.g. because experts are overly optimistic or pessimisting regarding the essentiality of patents in different
technological fields, and different firms’ patents are concentrated in different technological aspects of a
standard

16See supra note 5.
17Some assessments are explicitly based on eliminating those declared SEPs that are clearly not essential,

whereas other assessments aim at counting those patents that positively are essential.
18e.g. fundamental patents with broad claims and recent patents with narrow claims that are tailored to

the standard may have similar average probabilities of being essential, but it may be easier to ascertain
whether the narrow, tailored claim is or is not essential; an overly optimistic review that only discards
those patents that are clearly not essential will be overly favorable to a firm holding patents with broader
claims whose essentiality is inherently more uncertain, whereas a review that only identifies those patents
that clearly are essential and discards all the other ones will be biased in favor of firms with narrower
claims that are easier to map to the standard.
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Mallinson (2021) argues that ”a sample size approaching 3,000 declared-essential patents

per standard, at the very least, would be required”.19

2.3 Predictive modeling

More recently, some authors (Brachtendorf et al., 2020) have proposed a different approach.

Other researchers (Stitzing et al., 2017) had already found that the actual essentiality

of declared SEPs correlates with more easily observable characteristics of the patent or

declaration (e.g. whether the declaration mentions a specific section of the standard for

which the patent is alleged to be potentially essential). In addition, Brachtendorf et al.

(2020) propose a semantic score measuring the semantic distance between the patent claims

and standard specifications, and find that it significantly correlates with the likelihood

that a declared SEP is actually essential. Using these and other variables, one can use a

sample to estimate an empirical model predicting a patent’s essentiality.

Different types of models may be used in this context. While Brachtendorf et al. (2020)

estimate a logistic regression, Rangan and Yonamine (2021) propose machine-learning (ML)

approaches to essentiality assessments. Similarly to logistic regression, ML uses a sample

(or ”training dataset”) to estimate the relationship between declared SEPs’ observable

characteristics and an expert’s assessment of these patents’ actual essentiality, and then

makes predictions for essentiality rates in the entire population of declared SEPs.

The specific application of predictive modeling to the assessment of essentiality rates

in large populations of declared SEPs is insufficiently understood. Bekkers et al. (2020) e.g.

note that the consistency between the predictions of Brachtendorf et al. (2020)’s model and

experts’ assessment of essentiality is quite low, suggesting that their automated approach

is of limited use for making predictions for individual patents. While this is probably true

(at least at the moment) for all automated approaches, the relative merits of different

approaches for the determination of essentiality rates in larger groups or populations of

patents has not been explicitly investigated.

Similar to sampling, predictive models can generally be expected to improve with

the number of observations in the sample. Nevertheless, different estimation methods

have different characteristics. Pure sampling of patents uses only the patents of a specific

firm in a sample to predict the essentiality rate in that firms’ patent portfolio. Methods

using explanatory variables may draw from the entire sample (not limited to the patents

of the specific firm) to predict the essentiality rate in each individual firm’s portfolio.

Therefore, these methods have the potential to yield more precise predictions, in particular

for essentiality shares in small portfolios. Nevertheless, including or excluding a specific

variable may systematically advantage or disadvantage individual firms.

The performance and statistical properties of predictive modeling approaches obviously

depend on the specifics of each approach, i.e. the number and identity of explanatory

19While the authors also disagree about the correct application of basic statistical theory, the authors
apply different assumptions that contribute to explain these discrepancies: Mallinson (2021) incorporates
assessment inconsistencies into the calculation of the confidence intervals, assumes a low essentiality
rate among declared SEPs, and defines an acceptable size of the confidence interval as a fraction of the
estimated essentiality rate (for an estimated essentiality rate of 10%, an acceptable confidence interval
under his definition would span from 8.5 to 11.5%, a mere three percentage points interval.)
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variables, the type of model (e.g. logistic regression or tree-based ML algorithms), the

functional form of the regression equation, etc. In our analysis, we do not aim to

exhaustively assess all plausible predictive modeling approaches. Nevertheless, we aim

to achieve several objectives: first, we broadly replicate the fundamental tenets of the

analysis of Brachtendorf et al. (2020), the (so far) only predictive modeling approach

that is discussed in a publicly available paper in sufficient detail, in a different sample,

for a more recent technology standard generation, and using essentiality assessments

by different experts. Second, we aim to improve upon this approach using our more

comprehensive database of promising explanatory variables, and a more precise assessment

of the essentiality of declared SEPs for specific TS of a complex standard. Third, we aim to

assess the out-of-sample performance of predictions of essentiality rates in different firms’

portfolios, and to derive some generalizable take-aways regarding the promise, limitations,

and best use of predictive modeling approaches to SEP determinations more generally.

3 Data

For the empirical analysis, we use declarations of (potential) SEPs from the ETSI IPR

Database. The analysis considers all patent declarations published at ETSI up until

October 1, 2020 and classified as 5G relevant. Patent declarations were classified as

5G relevant if the Technical Specifications (TS) of the declaration were marked as 5G

technology by the 3GPP. For the analysis, we only take into account patents that were

granted at the USPTO (United States Patent and Trademark Office) or granted at the

EPO (European Patent Office) by October 1, 2020, and that were active (not expired,

revoked or lapsed by October 1, 2020). Furthermore, we restrict the analysis to patents

currently assigned to one of 35 firms (or their fully owned subsidiaries), which are among

the largest holders of declared SEPs complying with our different sampling criteria. These

35 assignees account for 19,488 active EP and US patents declared as potentially essential

to a 5G TS by October 1, 2020 (more than 95% of the total number of such patents in the

ETSI database).

For the purposes of sampling, patents were collapsed by extended INPADOC family

ID; i.e. for each extended INPADOC family, at most one representative patent can be

selected into the sample. There are 10,860 different extended INPADOC families in our

data, from which we selected a random sample of 960 families.20 For each INPADOC

family, if applicable, the representative patent is randomly chosen between the earliest EP

and the earliest US patent (by application date). For INPADOC families only containing

US or only containing EP patents, respectively, the earliest patent is the representative

20The initial sample included 1,000 patents. We eliminated a small number of INPADOC families with an
unusually large number of family members in the sample (more than ten sample patents) from both
the sample and the reference population. There are also a small number of cases in which various
patents in the sample are now listed as member of the same INPADOC family (presumably because an
application filed since creation of the original sample constitutes a common link between two sample
patents). While these adjustments (and the drop of 4% of the original sample) may result in the sample
not being 100% randomly selected, we took care to apply all adjustements equally to the sample and
the reference population. Furthermore, our comparative analysis of different methods is based on truly
random draws of subsamples from our sample.
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patent. For INPADOC families not selected into the sample, we only use the observable

characteristics of the representative patent to infer predicted essentiality rates.

The selected sample patents were examined by our technical experts, who provided an

assessment of the likelihood that the patent is essential to 5G standards.21 Experts classified

patents as ”fully mapped” (12.4%), ”partially mapped”, ”edge case”, or ”not mappable”

(56.4%).22 For our analysis, we conflate the two intermediary categories (partially mapped

and edge case; together accounting for 31.2%). The rate at which patents are found to be

”essential” is thus highly dependent on the specific criterion, ranging from 12.4% patents

fully mapped to 43.6% patents fully or partially mapped. In addition to providing an overall

assessment of the patent’s essentiality to 5G standards in general, for patents partially or

fully mapped, experts provided the identifier of the relevant technical specification (TS) to

which the patent was mapped. We matched this patent-TS mapping to the declaration

data. Disregarding different versions of the same TS, patents in our sample were declared

essential to - on average - 3.28 different TS. The experts could only confirm 17.8% of these

declared potential essentiality relationships; on average, for each patent there are 0.58 TS

for which the patent was both declared and found to be essential. In addition, the experts

mapped patents to 0.197 TS, on average, for which they had not been declared.

4 A regression framework to predict essentiality

In this section, we will estimate each sample patent’s probability of being essential as a

function of the patent’s observable characteristics. To this end, we perform a set of logit

regressions in the sample to estimate the relationship between patents’ observable variables

and mapping status; and apply the regression coefficients to the entire patent population

to calcucate predicted essentiality probabilities.

As explained above, a patent is essential to 5G if it is essential to at least one 5G TS.

In most but not all cases in which a patent is found to be essential to a TS, it has been

declared to be potentially essential to this specific TS.23 As a first step, we thus analyze

for all declared SEPs in the sample whether they are effectively essential to the specific

TS to which they were declared to be potentially essential.

21Essentiality assessments were ordered and paid for by iplytics, but independently carried out by
unaffiliated subject matter experts.

22These categories were defined by our technical experts, who describe the categories as follows:

− ”Fully Mapped: All the claim elements were found in standards, chart made to justify that the
patent is relevant (100% Mapping).

− ”Edge Case”: All the claim elements found in the standards (95%) except a very specific element
not explicitly disclosed in the standard. Left to interpretation. It may become full mapped or
may remain partial.

− ”Partially Mapped”: Most of the claim elements were found in standards, except one or two
concepts, chart made to justify that the patent is relevant (More than 60% Mapping).

− ”Not Mappable”: All the claim elements were not found in standards and patent is found not
relevant (If less than 50% Mapped).

23There may also be patents that are actually essential to a specific 5G TS, but have not been declared
potentially essentialy to any 5G TS. These patents are completely excluded from our analysis.
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For this analysis, we can use a substantially larger sample of more than 3,000 patent-

TS-relationships, as each patent was declared to be essential to - on average - more than

three different TS. In addition, we can make use of highly granular patent-TS-relationship

specific variables, which are highly plausible candidate variables for predicting effective

essentiality.

For some of these variables, we can directly build on the existing literature. Both

Stitzing et al. (2017) and Brachtendorf et al. (2020) find that patents that were declared to

be potentially essential to a specific section of a standard specification have a significantly

higher likelihood of actually being essential. Presumably, such section-specific declarations

are based on more specific, and hence more reliable, information and beliefs. Brachtendorf

et al. (2020) find that patents whose claims have a higher semantic similarity with the

text of a standard specification have a higher likelihood of being standard-essential.

We therefore use our declaration data to identify patent-TS-declarations referencing

specific TS sections. About 7.2% of the declarations in our data are section-specific

(i.e. among all patent-TS-pairs in our data, for 7.2% of the pairs, there is at least one

section-specific declaration; see Table 2). Furthermore, we calculate similarity scores

between the independent claims of all declared SEPs and the TS to which they were

declared essential.24 These variables are not only a priori plausible and supported by the

existing literature, they also exhibit a strongly significant positive correlation with the

mapping status of the patent - the likelihood that the experts found a declared SEP to be

effectively essential to a TS increases when the patent was declared essential to a specific

section of that TS, and when there is a higher similarity score between the language of the

patent’s independent claims and the text of that TS (Table 4).

Variable Mean Std. Dev. N
standard cited npl 0.281 0.449 2818
prioritydateoverlap 0.089 0.057 3174
related wg attendance 35.721 57.665 3106
related contributions 2.417 20.67 3174
cpcoverlap 0.034 0.039 3174
semantic score 0.66 0.05 3069
sectiondeclared 0.072 0.258 3183

Table 2: Summary statistics: Patent-TS relationship characteristics

24We use a Latent Semantic Indexing (LSI) model to calculate similarity scores. While this analysis is not
a direct replication of the proprietary semantic analysis used by Brachtendorf et al. (2020), our results
appear to be similar; and also Brachtendorf et al. (2020) find that their preferred algorithm produces
results that are similar to those of other, freely available semantic analysis methods. While innovations
in semantic analysis may improve the ability of semantic indicators to predict an expert’s finding that a
patent is indeed essential, we expect that our broader findings are generalizable to other methods based
on comparing the text of patent claims and standard specifications to calculate a metric of similarity.
See Appendix for details.
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Variables mapped npl date attend contr cpc semantic section
mapped 1.000

standard cited npl [npl] 0.098 1.000
(0.000)

prioritydateoverlap [date] -0.090 -0.090 1.000
(0.000) (0.000)

related wg attendance [attend] 0.184 0.087 -0.059 1.000
(0.000) (0.000) (0.001)

related contributions [contr] 0.105 0.038 -0.010 0.153 1.000
(0.000) (0.041) (0.557) (0.000)

cpcoverlap [cpc] 0.062 -0.030 0.512 0.123 -0.012 1.000
(0.000) (0.114) (0.000) (0.000) (0.493)

semantic score [semantic] 0.191 0.053 -0.091 0.157 0.087 0.087 1.000
(0.000) (0.006) (0.000) (0.000) (0.000) (0.000)

sectiondeclared [section] 0.126 0.087 -0.066 0.044 0.032 -0.017 0.041 1.000
(0.000) (0.000) (0.000) (0.015) (0.069) (0.351) (0.022)

Table 4: Pairwise correlation table: Patent-TS relationship characteristics

The similarity of our findings to those of Stitzing et al. (2017) and Brachtendorf

et al. (2020) provides some reason to be optimistic about the prospects of predicting the

essentiality of declared SEPs using observable characteristics. The fact that the same

or closely related variables consistently predict expert findings of essentiality in different

samples (drawn from different standard generations) suggests that the relationship between

these patent characteristics and the patents’ mapping status can indeed be generalized to

larger populations of declared SEPs. The fact that these variables consistently correlate

with different experts’ assessment of essentiality furthermore suggest that the correlation

extends beyond one specific method of evaluation, and may be generalizable to other

assessments of comparable scope and depth.

We complement these knwon predictors of essentiality with another set of variables.

While Brachtendorf et al. (2020) find that the number of prior art citations from a patent

to non-patent literature predicts essentiality for 4G (LTE), but not for 2G (GSM) or 3G

(UMTS) patents, we test for the more specific patent-TS-relationship specific variable

indicating whether the patent cites the specific TS to which it was declared to be essential

as part of the NPL citations. We find this to be the case for more than 28% of the

patent-TS pairs in the sample, and the variable correlates very significantly with the patent

being found to be essential to this specific TS.

In addition, we measure the CPC overlap between the patent, and all other patents

declared potentially essential to the same TS. Patents sharing a higher number of CPC

classifications with a higher proportion of the population of declared SEPs for this particular

TS are more likely to be technologically closely related to this TS - as confirmed by a

statistically highly significant positive correlation with the likelihood of being found

essential. We similarly calculate the priority date overlap between this patent and all

other patents declared potentially essential to this TS. We find that patents with a priority

date that is close in time to the priority date of many other patents declared potentially

essential to the same TS are statistically significantly less likely to be found essential to

this TS - perhaps an indication of greater technological uncertainty at times of significant

inventive activity; or peaks in strategic or opportunistic patenting and declaration of

”just-in-time” patents (Kang and Bekkers, 2015).

12



We furthermore build patent-TS-relationship specific variables from our extensive

databases with 3GPP contribution and attendance information. In particular, related wg attendance

measures attendance by the patent inventor(s) in the working group(s) related to the

technical specification to which the patent was declared potentially essential. Kang and

Motohashi (2015) find that participation of the inventor in 3GPP meetings is a significant

predictor of the patent being declared to be potentially essential. Our results demonstrate

that 3GPP meeting attendance by the inventor furthermore is significantly correlated

with the likelihood that a patent is actually found to be essential, conditional on it being

declared as potential SEP. Similarly, we find that a count of related contributions signifi-

cantly correlates with the likelihood that a declared SEP is actually found to be essential.

These findings may suggest that firms (and inventors) that directly and intensively partici-

pate in 3GPP have a better understanding of the standard, and thus are able to make

more accurate declarations of potential essentiality. The findings do not imply however

that contribution and/or attendance counts are direct measures of substantive technical

contributions to standards development.25

We combine these different independent variables into a predictive model, predicting

the probability that a patent is actually found to be essential to a specific TS for which it

has been declared to be potentially essential (Column (1), Table 5).26 All variables are

individually statistically significant, suggesting that they each add information that is

useful for predicting essentiality of a patent to a TS.

25See ? for a critical assessment of the use of contribution counts in the assessment of SEP portfolio value.
26In most of our analyses, we consider that all patents ”mapped” or ”partially mapped” have been found

”essential”. We explore some of the implications of the distinction between ”fully mapped” and ”partially
mapped” in Section X below.
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(1) (2) (3) (4)
mapped atleastonemapped atleastonemapped atleastonemapped

Patent-TS M1 M2 M3
standard cited npl 0.468∗∗∗ 0.448∗∗ 0.360∗

(4.07) (2.78) (2.04)

prioritydateoverlap -6.276∗∗∗ -5.265∗ -4.376∗

(-4.38) (-2.47) (-2.13)

related wg attendance 0.00253∗∗∗ 0.00362∗∗ 0.00226
(3.39) (3.04) (1.80)

related contributions 0.00447 0.00258 0.00383
(1.91) (1.12) (1.48)

cpcoverlap 8.350∗∗∗ 6.077∗ 4.730
(5.40) (2.42) (1.96)

semantic score 5.936∗∗∗ 5.995∗∗∗ 5.303∗∗

(5.38) (3.91) (3.23)

sectiondeclared 0.442∗∗ 0.447 0.215
(2.62) (1.92) (0.59)

numberspecsdeclared -0.211∗∗∗ 0.0657∗ -0.0346 -0.00122
(-8.93) (2.40) (-1.35) (-0.04)

total phat 3.862∗∗∗

(7.08)

technicalrelevance 0.0831∗ 0.0794∗ 0.0772∗

(2.22) (2.17) (2.15)

radicalness 0.0371 0.0475 0.0324
(1.43) (1.72) (1.10)

Constant -4.573∗∗∗ -1.912∗∗∗ -4.689∗∗∗ -4.366∗∗∗

(-5.90) (-7.53) (-4.34) (-3.56)
Observations 2,642 835 835 813
Firm FE N N N Y

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 5: Logit regression - Probability of patent being essential

There are many different measures for the performance of predictive models. As a first

step, we plot the mapping status of patent-TS-pairs by predicted probability brackets -

i.e. we divide the sample of 2,642 patent-TS-pairs that was used in the regression into 20

brackets of equal size, ranked from the top-5-percentile to the bottom-5-percentile in terms

of predicted essentiality probability; and then count the number of actually mapped pairs

within each bracket. The results in Figure 1 indicate that the model is highly accurate in

ruling out essentiality for a relatively small share of the population of patent-TS-pairs - the

bottom 20% of the distribution indeed only include very few observations of patents that

were actually found to be essential to this particular TS. The converse, however, is not true

- only in the very first Top 5% bracket, more than half of the declared patent-TS-pairs were

actually confirmed by the technical experts, and only by slight margins. The predictive

model thus does not identify any sample of patent-TS-pairs for which essentiality can be

presumed with high degreees of confidence.
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Figure 1: Mapping status by predicted probabilities; patent essential to
TS for which it was declared

While the results in Figure 1 present the entire continuum of predicted probabilities,

many standard indicators for the performance of predictive models are based on binary

predictions. In Table 6, we display the confusion matrix for a cutoff at a probability of 0.5

(i.e. a predicted probability of 0.5 or higher indicates a ”positive” prediction). The table

plots the numbers of false and true positive and negative predictions (e.g. false positive

predictions are those patent-TS-pairs for which the predicted probability based on the

predictive model is >0.5, but the expert’s assessment is ”unmapped”).

unmapped mapped all
prob<0.5 2131 441 2572
prob>=0.5 27 43 70
all 2158 484 2642

Table 6: Confusion matrix: patent essential to TS for which it was
declared

So far, we have analyzed patent-TS-pair specific variables, and their usefulness for

predicting whether a patent is essential to a specific TS to which it was declared. In many

settings, we will be more interested in predicting whether a declared SEP is essential to

any 5G TS. We can make use of some patent-level information, i.e. variables that vary

from one patent to the other, but do not change between different TS. Several of these

variables are based on patent citations. Counts of forward citations, i.e. the number

of prior art citations that a patent receives from ulterior patents, are a commonly used

indicator of patent quality or significance (Trajtenberg, 1990; Hall et al., 2005), and it has

repeatedly been shown that patents declared to be potential SEPs receive significantly

higher numbers of forward citations than other, otherwise comparable patents (Rysman

and Simcoe, 2008; Bekkers et al., 2017; Baron and Pohlmann, 2018). Rysman and Simcoe

(2008); Bekkers et al. (2017) furthermore find that rates of forward citations significantly

increase after a patent’s declaration to an SDO, suggesting the existence of a ”disclosure
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effect”. Brachtendorf et al. (2020) find that the number of forward citations significantly

predicts that a patent declared to be potentially essential is actually found to be essential,

and that the ”disclosure effect” discovered by Rysman and Simcoe (2008); Bekkers et al.

(2017) depends on the patent’s semantic similarity to the standard, a measure of actual

essentiality. Taken together, these findings suggest that forward citations are correlated

with a patent’s actual essentiality.27

The count of patent citations is subject to widely studied methodological considerations.

Counting citations from individual patents may result in over-counting, as different patents

relating to the same invention are likely to cite the same prior art. Furthermore, citation

counts may be biased towards older patents, as these patents had more time to accrue

citations. Finally, citation counts may include significant numbers of self-citations (i.e.

citations from other patents of the same owner), which are potentially subject to strategic

behavior. To address these considerations, we use a technical relevance indicator, an

age-normalized count of forward citations received from different independent patent

families, excluding self-citations.

Another citations-based indicator we use is radicalness; an inverse measure of the

number of backward citations, i.e. the citations from the focal patent to other patents.

Backward citations have sometimes been found to be positively correlated with patent value

(Lanjouw and Schankerman, 2004); nevertheless, our measure of radicalness may indicate

that a patent protects an invention that is more distinct from the prior art. Empirically, we

find that both technical relevance and radicalness are positively correlated with a positive

essentiality assessment (i.e. the patent is found to be essential to at least one 5G TS), see

Table 8.

Furthermore, we use an indicator of legal breadth, which is the number of words in

the shortest independent claim of the patent, normalized by jurisdiction and CPC class.

The length of the shortest independent claim is an increasingly accepted measure of claim

”scope” or ”breadth” of the legal protection awarded by a patent (Marco et al., 2019). On

average, the addition of more words to a patent claim makes the claim more specific, and

hence narrower. Brachtendorf et al. (2020) find that the length of the first claim of the

patent is negatively correlated with the likelihood that a patent declared to be potentially

essential is found to be actually essential by an independent expert. In our data, the

length of the shortest claim is negatively correlated with an essentiality finding, but the

correlation is only mildly significant (significant at 10% but not at 5%). Other relatively

commonly used patent characteristics, such as family size (the number of patents in the

INPADOC family), and team size (the number of inventors listed on the patent) are not

correlated with our experts’ assessment of declared patents’ actual essentiality.

27There can be different mechanisms which can potentially explain this correlation - follow-on inventors
may be more likely to ”build on” inventions incorporated into standards; and patents receiving many
forward citations may be intrinsically more fundamental and difficult to circumvent (characteristics that
also increase the probability of the patent being essential).
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Variables atleastonemapped specs tr rad cits LB team) family
atleastonemapped 1.000

numberspecsdeclared [specs] -0.043 1.000
(0.178)

technicalrelevance [tr] 0.090 -0.001 1.000
(0.005) (0.973)

radicalnessra [rad] 0.077 0.005 0.004 1.000
(0.018) (0.866) (0.913)

Forward Citations [cits] 0.026 -0.037 0.360 -0.042 1.000
(0.413) (0.244) (0.000) (0.199)

Legal Breadth [LB] ) -0.060 -0.001 0.111 0.040 0.043 1.000
(0.061) (0.985) (0.001) (0.213) (0.179)

Team Size [team] 0.031 -0.054 0.025 -0.041 0.029 0.034 1.000
(0.342) (0.091) (0.434) (0.211) (0.370) (0.294)

Family Size [family] 0.009 -0.021 0.010 -0.224 0.061 0.071 0.053 1.000
(0.785) (0.513) (0.761) (0.000) (0.057) (0.027) (0.102)

Table 8: Pairwise correlation table: Patent characteristics

In addition to these patent-level characteristics, we hypothesize that the likelihood

that a patent is essential to any TS depends on the characteristics of its relationship with

each of the TS to which it was declared to be potentially essential. Specifically, a patent is

essential to 5G if it is essential to at least one 5G TS. We can thus express the probability

Πi that patent i is essential to 5G as a function of the probability πi,k that patent i is

essential to any of the N specifications k = 1, 2, ..., n to which the patent is potentially

essential:

Πi = 1−
n∏
k=1

(1− πi,k) (1)

Empirically, we can estimate π̂i,k using the regression equation πi,k = α1Xi,k + εi,k
, where Xi,k is the vector of our patent-TS-pair specific variables. Using the π̂i,k thus

estimated, we can calculate Π̂i using equation (1). Π̂i is a valid estimation of Πi if error

terms εi,k are uncorrelated across the different specifications for which a patent has been

declared. We however expect that there may be unobserved variables simultaneously

affecting the probability that a patent is essential to various specifications. Furthermore,

a patent may be found to be essential to a specification to which it was not specifically

declared. To allow for these different considerations, we estimate a second regression

equation:

Πi = α1Π̂i + α2Yi + εi (2)

where Yi is a vector of patent-specific characteristics. We can think of the estimated Π̂i

as a linear transformation of different patent-TS-specific characteristics into a single patent-

specific variable. We will refer to this specification as ”Model 1”, or M1. Alternatively,

and in line with Brachtendorf et al. (2020), we will estimate Πi directly as a function of

patent-specific characteristics, as well as characteristics specific to the relationship between
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patent i and TS k̃, which is the TS most similar (in terms of semantic similarity score)

to the patent (among the TS to which the patent was declared).28 We will refer to this

alternative specification as ”Model 2”, or M2:

Πi = α1Yi + α2Xi,k̃ + εi (3)

Finally, we test an additional predictive model, which is equivalent to M2, except

that it adds firm fixed effects to the regression equation. One can think of a model with

firm fixed effects as a hybrid between pure sampling and predictive modeling. While pure

sampling exclusively uses a firm’s essentiality ratio in the sample to predict the same firm’s

out-of-sample essentiality ratios, predictive modeling uses observable patent characteristics,

and the relationship between these observable characteristics and patents’ probability

of being essential in the sample, to predict the essentiality of patents not included in

the sample. M3 relies on both observable patent characteristics and firms’ in-sample

essentiality rate to make out-of-sample predictions.

The results of the estimations of Models 1, 2, and 3 are presented in columns (2), (3),

and (4), respectively, of Table 5. In Table 9, we present the confusion matrices associated

with Models 1, 2, and 3. In Figure 2, we display the number of patents that were and that

were not mapped to at least one 5G TS over the distribution of predicted probabilities,

comparing Models 1, 2, and 3. We can see that the performance of the different models

is very similar. Model 3, which uses the largest number of covariates, makes the most

accurate in-sample predictions - in particular, it stands out as the Model that is most

capable of identifying a (small) group of patents with a very high likelihood of being found

essential.

unmapped mapped all
M1.prob<0.5 391 222 613
M1.prob>=0.5 87 135 222
M2.prob<0.5 389 206 595
M2.prob>=0.5 89 151 240

M3.prob<0.5 373 191 564
M3.prob>=0.5 95 154 249
all 478 357 835

Table 9: Confusion matrix: patent essential to at least one 5G TS

We display a summary of prediction performance measures in Table 10, such as

sensititivity (or ”true positive rate” or ”recall”, i.e. the share of positive observations

correctly predicted), specificity (or ”true negative rate”, i.e the share of negative observations

correctly predicted), positive predictive value (or ”precision”, or the share of positive

predictions that are true positives) and negative predictive value (the share of negative

predictions that are true negatives). All these measures are affected by the cutoff level

and the distribution of outcomes.

28More specifically, we first eliminate patent-TS-observations with missing information for one of the
variables used in the regression; k̃, is thus the TS most similar to the patent among the TS to which the
patent was declared, and for which we have all information required to compute predicted essentiality.
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Figure 2: Mapping status of patents (mapped to at least one 5G TS), by
predicted probability of essentiality

19



A more informative measure of overall prediction performance is Matthews’ correlation

coefficient (MCC), which is independent of the distribution of observations between positive

and negative outcomes. A MCC equal to 1 indicates that the model predicts each outcome

perfectly, whereas a MCC of 0 indicates that the model is equivalent to a random prediction.

The MCC once again confirms that Model 3 makes the most accurate predictions, and

that our Model 1 is significantly dominated by the more direct patent-level estimations of

essentiality - at least in-sample.

Nevertheless, these performance measures only represent intermediate assessments

- we are not seeking to predict essentiality rates in the sample, but in the un-tested

population of patents; and we are less interested in predicting the essentiality probabilities

of individual patents than essentiality rates in different firms’ patent portfolios. A different

set of measures is required to assess the usefulness of different models in this context.

Patent-TS-pair Patent
M1 M2 M3

pct correctly classified 82.25 62.99 64.67 64.82
sensitivity 9.917 37.82 42.3 44.64
specificity 98.47 81.8 81.38 79.7
pos predictive value 59.26 60.81 62.92 61.85
neg predictive value 82.98 63.78 65.38 66.13
Matthews corr coeff. .1882 .2196 .2588 .261

Table 10: Prediction performance statistics

5 Comparison of predictive modeling and sampling

5.1 Comparison of different predictions for SEP population

In this section, we will use our sample of checked declared SEPs to make predictions about

essentiality rates in firms’ overall portfolios of declared 5G patents. In particular, we will

compare predictions based on sampling methods and predictive modeling.

There is a total of 10,874 INPADOC families that comply with all sample criteria.;

989 INPADOC families out of this population were randomly selected for an essentiality

assessment. The remaining (unchecked) comparison sample thus includes 9,885 different

INPADOC families.29

When using our regression results to predict essentiality rates in the population,

we reproduce the sampling criteria that we used for selecting patents for essentiality

assessments. We thus identify the representative patents within each family. In line with

our sampling criteria, these are the earliest EP and US applications within each INPADOC

family. Among various family members issued by the same patent office with the same

application date, we select the patent(s) with the earliest publication date. For INPADOC

29Some INPADOC families may be assigned to multiple firms within our sample of 35 sample firms (either
because different family members are assigned to different firms, or because a single patent has multiple
assignees, or because an assignee is a joint venture jointly owned by two sample firms). The comparison
sample thus consists in 9,945 INPADOC family observations.
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families with multiple representative patents,30 we average the predicted probabilities of all

representative patents to calculate the family’s predicted probability of being essential. The

comparison sample contains a total of 17,796 patents, of which 13,949 are representative

patents.

In order to allow for comparisons between different methods, an additional sampling

restriction needs to be applied: while we can use 989 INPADOC families for a sampling

approach, we can only use the regression approach to predict essentiality rates for those

patents for which all explanatory variables are observable. Out of the 10,874 INPADOC

families in the population, we have complete information to predict essentiality rates of

9,298 families (including 828 checked sample patent families and 8,470 unchecked families

in the comparison sample).

For both approaches, we compute confidence intervals for our predictions. In the

sampling approach, each firm’ sample patents are a random draw from the respective

firm’s population patents; we can thus calculate the confidence intervals for the predicted

population essentiality rates using the observable sample standard deviation in the sample.

Given that - on average - approx. 10% of a firm’s patents are selected into the sample and

checked, population confidence intervals slightly overstate the extent of uncertainty - there

is uncertainty only regarding the share of essential patents in the unchecked part of the

firm’s portfolio. We can adjust for this using finite population correction factor to calculate

confidence intervals for the share of essential patents in firm portfolios (comprising both

checked and unchecked patents).

We numerically approximate confidence intervals for the predicted number of essential

patents owned by different firms.31 In a first step, we draw 200 different samples with

replacement (bootstrap samples) from the sample of tested patents, where each boostrap

sample has the same size as the sample itself. We estimate the two models in each of the

bootstrap samples to obtain an approximation of the full distribution of predictions for

the essentiality probability of each unchecked patent. In a second step, for each of the 200

predictions, we randomly generate 200 realizations of essentiality by patent, given each

patent’s individual predicted probability of being essential. From these 40,000 iterations,

we observe each firm’s probability mass function of the probability that its portfolio

contains X essential patents, for each Xε[0, N ], which we can use to identify the 90%

30Many INPADOC families have representative EP and US members. There can also be multiple
representative members from the same office, if these patents have the same application and publication
dates.

31To compute confidence intervals for essentiality shares predicted using regression approaches is non-
trivial. The models predict (with uncertainty) the probability for each individual patent to be essential.
Computing the confidence interval for these predictions is different however from computing confidence
intervals for the predicted number of essential patents in a firm’s portfolio. The probability of each
individual patent to be essential defines the probability mass function of the probability that a firm’s
portfolio contains exactly X essential patents for each X from 0 to N, where N is the number of
potentially essential patents declared by the firm. Given that each patent’s probability of being essential
is different and individually determined, one would need to calculate the probabilities for each of the
2N possible combinations of essential/non-essential realizations in a portfolio of N patents, and sum
up the probabilities of all combinations resulting in the same number of essential and non-essential
patents. Given that even for a modest portfolio size of 30 patents, there are over 1 million combinations
to calculate, this is not practically feasible.
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Figure 3: Essentiality rates and confidence intervals (corrected for finite
population size) - sampling method

and 95% confidence intervals for the predicted number of essential patents in each firm’s

portfolio.

We depict predicted essentiality rates based on sampling, along with 90 and 95%

confidence intervals, in Figure 3. Sampling provides a fairly precise estimate of the share

of essential patents in the total population of declared SEP. With 95% confidence, this

share in the total population is contained in an interval ranging from 40.3 to 46.4% - a

sizeable, but still reasonable confidence interval. The confidence interval at 90% confidence

is slightly smaller (40.8 to 45.9%), whereas the 95% confidence interval based on the

smaller subsample of 822 patent families with complete information on covariates is slightly

larger (39.7% to 46.3%), but there are no indications that the share of essential patents

significantly differs between patents with complete and incomplete information on relevant

covariates (this is reassuring, as it suggests that using a regression framework to predict

essentiality rates using covariates with missing observations does not inherently introduce

an additional sampling bias). The finite population correction factor has a modest effect

on the size of the confidence intervals for the total population.

In contrast to the relatively precise prediction of the share of essential patents in the

total population, predicted shares of essential patents in individual firms’ portfolios are

based on much smaller samples, and thus necessarily much less precise. Only for some

firms with more than 100 checked patents in the sample, 95% confidence intervals are

smaller than 20 percentage points; for firms with small numbers of patents in the sample,

the only prediction that the sample allows to make with reasonable confidence is often

that their share of essential patents ranges anywhere from single digit percentages to more

than 80%. Only for a small number of firms’ portfolios, we can conclude with reasonable

levels of confidence that the share of essential patents in their portfolio of declared SEPs

is signficantly lower (e.g. Huawei, Nokia, ZTE, Guangdong Oppo, CATT) or higher (LG

Electronics, Sharp, NTT, InterDigital) than the population average. The finite population
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Figure 4: Essentiality rates and confidence intervals - logistic regression
method

correction factor significantly reduces the size of the confidence intervals only for some

firms, whose share in the sample is disproportionately large compared to their share in the

population (e.g. ZTE).

While sample essentiality ratios thus provide relatively precise predictions of population

essentiality ratios for the entire population of declared SEPs, a much larger sample of

checked patents would be required to produce useful predictions of the essentiality ratios

in individual firm portfolios, particularly portfolios of firms with only small numbers

of declared patent families. Alternatively, we can use our observable variables to make

predictions for essentiality rates in individual firm portfolios. Figure 4 depicts essentiality

rates by firm portfolio, based on Model 2.32

As can be seen from comparing Figures 3 and 4, confidence intervals for predicted

essentiality rates - especially for medium and small portfolios - are much smaller in

the predictive modeling approach. This clearly demonstrates that predictive modeling

has the potential to produce significantly more precise estimates of essentiality rates in

individual portfolios. This advantage is particularly pronounced for smaller portfolios -

unlike sampling, predictive modeling uses the entire sample of checked patents, and not

only the patents in an individual firm portfolio, to estimate the relationship between

essentiality and observable covariates. It is thus capable of making relatively precise

predictions for essentiality rates in individual portfolios, even if no or only very few patents

from that specific portfolio were checked.

32As explained above, we use bootstrapping and random realizations of individual patents’ probabilities
to be essential to calculate essentiality rates and their confidence intervals. Figure 4 thus depicts the
distribution of the predicted shares of firms’ patents that are essential, rather than the (much easier
to calculate) distribution of individual patents’ probability to be essential. We report results based on
Model 2 because of its superior out-of-sample performance (see section 5.2. below).
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Figure 5: Number of actual SEPs and confidence intervals (corrected for
finite population size) - sampling method

Nevertheless, the different predictions differ not only in terms of precision. Sampling

and predictive modeling actually result in substantially different predictions. Comparing

the predicted numbers (rather than rates) of essential patents in different firms’ portfolios,

with predictions based on sampling (Figure 5) and predictive modeling (Figure 6), it is

apparent that there are sizeable differences not only in the predicted numbers of essential

firms in firms’ portfolios, but even the ranking of the five largest portfolios of patents

essential to 5G standards.

Figure 7 displays a scatter plot of the predicted shares of essential patents in different

firms’ portfolios, where the sampling rate is on the x -, and the rate predicted by the logistic

regression model is on the y-axis. While there obviously is a positive correlation between

the two different predictions, this correlation is surprisingly weak, and there are many

observations for which the two methods yield inconsistent predictions. The scatter plot

also reveals that predicted essentiality rates based on the model are far less distributed

than the essentiality rates in the sample - either because the model predictions understate

the true extent of variation between different firms, or extrapolations from very small

samples yield overly extreme predictions of disparities between firms, or both.

In light of these disparities between different predictions, it is thus necessary to assess

which method yields more accurate results. As we only have essentiality checks for the

sample patents, we cannot directly assess the accuracy of the population predictions. We

can however assess the out-of-performance of the two different methods, by using randomly

drawn sub-samples of our sample.

5.2 Assessment of out-of-sample performance

In this section, we make predictions about essentiality shares in firm’s portfolios in half

of our sample, based on observations of the other half of our sample. This allows us to
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Figure 6: Number of actual SEPs and confidence intervals - logistic
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Figure 7: Correlation between predictions based on different methods
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assess the capacity of different methods to correctly predict essentiality rates outside of

the sample that was submitted to essentiality checks. Specifically, we make 200 random

partitions of our sample, and aggregate the results from our assessments into different

aggregate measures of the methods’ accuracy. In particular, we calculate average error,

total bias, and firm level bias.

We predict out-of-sample numbers of essential patents for each firm i ∈ N , for each

sample partition j ∈ {1, 2, ..., 200}. We denote εi,j = x̂i,j − xi,j the individual prediction

error per firm and sample, i.e. the difference between the predicted number of essential

patents of firm i in the excluded subsample j, and the ”true” number of essential patents

(as per our essentiality checks) of firm i in the excluded subsample j.

Average error is simply the average absolute value of all individual errors in the

assessment of numbers of essential patents per firm, i.e. ¯|εi,j|, and total bias is the

arithmetic mean of all individual errors ¯εi,j. If a method e.g. misses the ”true” number

of a firm’s essential patents on average by one patent, but is just as like to over- as to

under-estimate the true number, the average error is 1, and total bias is 0. Positive total

bias indicates that the method generally over-, and negative bias indicates that it generally

under-estimates the true number of essential patents in firms’ portfolios (on average, across

all firms). We define firm level bias as the the sample average of the absolute values of the

arithmetic means of individual assessment errors per firm, or

∑N
i=1 |

∑200
j=1 εi,j

200
|

N

If a method systematically over- or under-estimates the numbers of essential patents

in a particular firm’s portfolio, the average of assessment errors over sample partitions

for that particular firm will differ from zero. The average amount of these firm level

discrepancies from the mean zero assessment error baseline is a measure of the method’s

overall ”fairness”, i.e. its propensity to systematically favor or disadvantage different firms.

In Figure 8, we present average errors in the predictions of out-of-sample essentiality

rates for the 14 largest portfolios in our sample. The figure represents the average error

as a percentage of the true number of essential patents in the out-of-sample portion of

the portfolio, for different methods.33 We can see that average sampling error increases as

portfolio size decreases - sampling is less reliable for smaller portfolios. The average error

of regression approaches (either direct logit regression using patent-level characteristics,

or two-stage predictive modeling aggregating patent-TS-level information) is relatively

independent of the size of the portfolio,. Therefore, regression-based approaches are

substantially more accurate than sampling for smaller portfolios.

Nevertheless, it is important to distinguish between random noise and systematic

error (bias). In Figure 9, we present the distribution of assessment errors based on the

sampling method, for the largest 14 portfolios. Once again, we can see that the accuracy

33In this preliminary version, the scale does not correspond to the true magnitude of average error. To
be specific, Figure 8 depicts the average of the squares of assessement errors across sample partitions,
divided by the true number of essential patents in the excluded portion of the portfolio.
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Figure 8: Average magnitude of prediction errors of different methods -
14 largest portfolios

of the method decreases when sample size decreases - the range of assessment errors

becomes increasingly large. Nevertheless, the mean assessment error is always close to

zero, confirming that sampling is unbiased - on average, sampling is just as likely to over-

as it is to under-estimate the number of truly essential patents out-of-sample, for every

individual firm.34

Replicating the same analysis with the predictions based on (direct) logistic regression

in the sample yields a very different picture. While the range of assessment errors does

not increase for smaller portfolios, and the absolute values of assessment errors for smaller

portfolios are thus smaller using this method, the mean prediction error by firm may be very

substantially (and statistically significantly) different from zero. This means that for some

firms (Samsung, Sharp, Interdigital, NTT), our logistic regression approach systematically

under-estimates the out-of-sample number of truly essential patents, whereas for other

firms (in particular Nokia), it systematically over-estimates that number.

When comparing the performance of sampling and predictive modeling, there is thus

an inherend trade-off between precision and bias - predicting the number of essential

patents based on observable patent characteristics may improve upon sampling in terms

of average accuracy (especially for smaller portfolios), but only sampling is inherently

(axiomatically) unbiased. We will discuss the practical implications of this trade-off in the

Discussion section below.

Empirically, we can attempt to resolve the trade-off by combining elements of sampling

and modeling. One such combination consists in introducing firm-fixed effects in the

logistic regression predicting the probability of an individual patent to be essential (Model

3). Similar to sampling, this approach uses observations of a firm’s essentiality rate in

34This is of course axiomatically true for any random sampling.
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Mediatek

ETRI

Blackberry

NTT

Apple

InterDigital

Sharp

Ericsson

ZTE

LG Electronics

Qualcomm

Nokia

Samsung

Huawei

-.5 0 .5 1

Mean prediction error logit regression - direct

90% confidence interval

95% confidence interval

Figure 10: Prediction error and bias based on direct logistic regression
method

28



the sample to predict the same firm’s essentiality rate out-of-sample, but it combines this

information with information about other covariates.

We present the overall out-of-sample performance measures of our different approaches

in Table 11. The table confirms that logistic regression produces a smaller average error in

the assessment of firms’ out-of-sample essentiality rates than sampling. The advantage of

modeling is relatively modest - while sampling produces an average error of 1.75 patents

(or an average error of 20% of the true number of out-of-sample essential patents), the best

logistic model produces an average error of 1.61 patents (or 17.8% of the true number of

out-of-sample essential patents). Sampling is just as accurate as the best logistic regression

model in predicting essentiality rates in the largest ten portfolios (both methods produce

an average of approx. 3 patents on average, which - given the larger size of the portfolios

- represents an average error of 10% of the true number), but predictive modeling more

significantly outperforms sampling for the remaining portfolios (24% instead of 29% average

error).

Nevertheless, Table 11 also confirms that all logistic regression appraoches are subject

to bias. The amount of total bias seems relatively acceptable - on average, different logistic

regression models over- or under-estimate the true number of essential patents in a firm’s

portfolio by 1 to 4% (i.e. some models are systematically overly optimistic, whereas others

are systematically overly pessimistic, but this type of bias is not very pronounced). More

worryingly, all models produce significant firm-level bias (i.e. systematically over-estimate

the essentiality ratios of some firms, and systematically under-estimate the ratios of other

firms). The different models produce a systematic error of 14 up to 18% of the true number

of essential patents (whereas the risk of systematic error with sampling is negligible).

The results imply that the largest part of the assessment error using logistic regression is

systematic error, especially in larger portfolios.35

average error total bias firm-level bias
All top10 others All top10 others All top10 others

sampling N 1.749 3.069 0.864 0.0280 0.0788 -0.0061 0.0839 0.146 0.0513
pct 0.206 0.100 0.292 0.0017 0.0024 0.0012 0.0121 0.0044 0.0177

M1: logit (2 stage) N 1.718 3.120 0.776 0.0817 0.416 -0.143 1.262 2.601 0.558
pct 0.186 0.0998 0.256 0.0062 -0.0189 0.0265 0.155 0.0809 0.208

M2: logit (direct) N 1.606 2.937 0.713 -0.472 -0.861 -0.211 1.092 2.232 0.493
pct 0.178 0.100 0.240 -0.0254 -0.0528 -0.0033 0.136 0.0797 0.176

M3: logit (direct) FEs N 1.859 3.376 0.841 -0.531 -0.867 -0.306 1.401 2.828 0.650
pct 0.202 0.119 0.270 -0.0404 -0.0673 -0.0186 0.176 0.102 0.228

Table 11: Comparison of different methods - average precision and bias

35e.g. direct logistic regression produces an average assessment error of 10% in the largest portfolios,
where 8% are attributable to systematic error (firm-level bias). Sampling also produces an average
assessment error of 10% for these ten portfolios, but this error is entirely random - in our 200 random
sample partitions, we find less than 1% firm-level bias with sampling (and axiomatically, we know that
firm-level bias with sampling converges to zero).
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6 Assessment uncertainty

So far, we have compared two different methods of extrapolating information about

essentiality rates from a randomly drawn sample. As discussed, another alternative

approach is to assess the entire population of declared SEPs. Given resource constraints on

the assessment, that necessarily means that fewer resources are available to the assessment

of each individual patent. By and large, it is plausible that more cursory assessments

lead to a larger number of assessment errors. When comparing sample-based methods to

assessments of the total population, it is thus necessary to analyze the trade-off between

sampling and assessment errors.

So far, we have assessed the accuracy of different methods’ predictions by assessing the

method’s ability of using a certain essentiality assessment in a (sub-)sample to predict the

outcome of the same assessment out-of-sample. To assess to what extent these predicted

essentiality rates correspond to the rates of patents that are ”truly essential”, one would

need a sufficiently large sample of patents for which true essentiality is known with certainty.

Nevertheless, no such sample exists. Even when individual SEPs are subjected to extensive

expert assessments and counter-assessments, as for example in the context of complex

litigation, the outcome of these determinations often continues to be open to challenges

and debate. Empirically, there is no absolute measure of essentiality with which individual

experts’ assessments of essentiality could be compared.36

In order to analyze the consequences of uncertainty in the assessment of individual

patents, we will use the tiered nature of our essentiality checks. So far, we have considered

all patents that our experts classified as ”fully mapped” or ”partially mapped” (including

”edge cases”) to be ”truly essential”, resulting in an aggregate essentiality rate of 43.6% of

the assessed patents. This assessment is certainly over-inclusive - in fact, our essentiality

rate is situated at or above the upper end of what experts consider to be a plausible range

of the share of truly essential patents among declared SEPs.37

On the other hand, considering that only ”fully mapped” patents are essential would

most likely be under-inclusive - by comparison to other existing studies, an essentiality

ratio of only 12.4% seems excessively low. A plausible interpretation of the results of our

essentiality checks is that ”partially mapped” indicates a probabilistic statement about

essentiality - the 12.4% ”fully mapped” patents are very likely to be essential, the 56.4%

”not mappable” patents are very unlikely to be essential, and there is significant residual

uncertainty regarding the essentiality of the remaining 31.2% ”partially mapped” patents.

While there obviously also is uncertainty regarding the actual essentiality of ”fully mapped”

and ”not mappable” patents, we are confident that the extent of uncertainty is greater

among the ”partially mapped” patents. We can thus use these tiers for a general analysis

of the distribution of assessment uncertainty.

If different experts find vastly different shares of a population of declared SEPs to be

essential, that necessarily means that their assessments of a large number of individual

36For a more detailed discussion of this point, see e.g. Mallinson (2021).
37Based on various studies of essentiality rates among declared SEPs, the contribution of the SEPs-Expert-

Group (2021) e.g. notes that ”an average essentiality ratio somewhere between 25% and 40% seems
realistic, with substantial variation between standards and portfolios.”
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Figure 11: Scatter plot - essentiality shares of portfolios, optimistic vs
pessimistic assessment

patents diverge. Nevertheless, the fact that experts disagree on the essentiality of individual

patents must not necessarily mean that they disagree on the ranking of different portfolios.

The question whether different experts’ opinions on the essentiality of individual patents

provides a reliable basis for the assessment of essentiality ratios in different portfolios

hinges not as much on the number of times they get it right or wrong, as it depends on

whether the errors they make are random noise or systematically benefit one firm over

another. One (but not the only) potential source of systematic error arises if assessment

uncertainty is distributed differently over different firms’ portfolios.

For illustration, Figure 11 plots the shares of firms’ patents that are ”fully mapped”

against the share of firms’ patents that are either ”fully” or ”partially mapped”. Following

our general argument, a conservative (or ”pessimistic”) assessor would only consider the

patents that are ”fully mapped” to be essential; whereas an ”optimistic” (or lenient) assessor

would find all patents that are either partially or fully mapped to be essential. As can be

seen from Figure 11, the judgments of pessimistic and optimistic assessors about essentiality

shares in different firms’ portfolios are clearly correlated - while the optimistic assessor

finds much larger number of patents to be essential, portfolios that rank highest in an

optimistic assessments also tend to rank highest in pessimistic assessments.

Nevertheless, the correlation is far from perfect. Some firms’ portfolios include much

larger shares of edge cases than others. Applying the sample shares of essential patents to

the populations of declared SEPs, a conservative (pessimistic) assessor wiould find that

Nokia holds the second, and LG Electronics the fourth largest number of actually essential

5G families; an optimistic (lenient) assessor however would find that LG Electronics ranks

second, and Nokia only fourth. To compare how similar the predictions of the ”optimistic”

and the ”pessimistic” assessor are, we compute Spearman rank correlations between the

predicted numbers of essential patents in different firms’ portfolios.
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fully mapped fully or partially mapped declared
fully mapped 1.0000
fully or partially mapped 0.8825 1.0000
declared 0.8153 0.9299 1.0000

Table 12: Spearman rank correlations - ranking of portfolios with pes-
simistic assessment, optimistic assessment, no assessment

The ranking of firm portfolios of the lenient examiner is actually more similar to a

ranking based on simple counts of declared SEPs than to the conservative examiner’s

ranking. It is thus clear that assessment uncertainty regarding the essentiality of individual

patents translates into significant uncertainty regarding essentiality ratios in different

firms’ portfolios - so much so that different experts’ assessments may diverge more widely

from each other than from a completely agnostic count of declared SEPs, without any

essentiality assessment.

To understand the consequences of this assessment uncertainty, we simulate a ”true”

number of essential patents, which is in-between the views of the optimistic and the

pessimistic assessor. We suppose (for the sake of exposition) that each partially mapped

patent has a 50% likelihood of being essential; and simulated 200 realizations of the sample

patents’ actual essentiality.

For each of these hypothetical realizations, we simulated different types of assessment

error. In a ”light-touch” review, the examiner has no information about the essentiality of

partially mapped patents. An optimistic assessor will classify each of these patents to be

essential, a pessimistic assessor will classify none of these to be essential, and a neutral

examiner will find each patent to be essential with a probability of 0.5.38 Each of these

assessors correctly classifies fully mapped and non-mappable patents, and - on average -

for partially mapped patents, they all get it right half of the times, on average. In total,

they correctly assess 84% of the patents in the sample.39

While the three examiners make exactly the same number of mistakes on individual

patents, the errors that they make in the assessment of different firms’ portfolios is different.

Figure 12 depicts the average magnitude and direction of different examiners’ errors in

predicting the share of the total number of essential patents owned by any individual

firm. While the optimistic expert obviously over-, and the pessimistic expert under-states

the true number of essential patents in each firm’s portfolio, they also make systematic

firm-level errors - they systematically over-estimate the share of the total number of true

essential patents that is held by some firms, at the expense of other firms. The neutral

expert, on the other hand, is unbiased - not only with respect to the total share of essential

patents, but also with respect to the shares of true essential patents owned by different

firms.

This finding carries an important insight for the conduct of essentiality assessments.

At first glance it seems to be good practice to only count those patents that are found to be

38which we simulate in 200 different realizations for each of the 200 hypothetical sample realizations; we
thus average over 40,000 different iterations

39Our hypothetical ”light-touch” reviewers perform thus about as well as the examiners in the pilot project
by Bekkers et al. (2020).
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Figure 12: Average prediction error and bias - optimistic, neutral, and
pessimistic assessors

essential with high degrees of confidence - or to only discard those declared SEPs that are

quiet certainly not essential. Nevertheless, such assessment methods induce systematic bias

between different firms. An unbiased review requires to adequately reflect the probabilistic

nature of patents whose essentiality cannot be determined - if necessary with a coin flip,

such as our hypothetical ”neutral” assessor above.

Presumably, a more thorough review would produce more reliable information about

patents’ actual essentiality, including for difficult cases. We assume that after a thorough

review, our examiner has a 75% chance of finding the true essentiality of a partially mapped

patent.40 In this more thorough assessment, all examiners (optimistic, pessimistic, or

neutral) get it right 93% of the times, on average (for all patents). We can thus compare

the outcome of a more thorough assessment of one (randomly drawn) half of the sample

with a light-touch review of the entire sample.

optimistic pessimistic neutral
thorough sample average error 0.006 0.0088 0.0069

bias 0.0014 0.0027 0.0006
light touch all patents average error 0.0039 0.0084 0.0044

bias 0.0022 0.0079 0.0005

Table 13: Comparison of thorough sample assessment and light touch
review of all patents - error and bias

The results of that comparison are presented in Table 13. A ”light-touch” assessment

(accurate at 84%) of the entire sample generally produces a slightly lower average error in

40In a first step, the examiner has a 0.5 probability of discovering the essentiality of the patent. If the
examiner does not discover the true essentiality, the pessimistic examiner finds the patent not to be
essential, the optimistic examiner finds the patent to be essential, and a neutral examiner finds the
patent to be essential with a random probability of 0.5 (each of these is correct half of the time).
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the determination of firms’ share in the total number of essential patents than a thorough

review (accurate at 93%) in a randomly selected sub-sample, extrapolated to the entire

sample. Nevertheless, when assessors are overly optimistic or pessimistic regarding the

essentiality of declared SEPs, on average, a more thorough review of a smaller subsample

is less prone to firm-level bias - while sampling produces slightly larger errors, on average,

these errors are significantly less susceptible of systematically benefiting some firms at the

expense of others.

Similar to our comparison between predictive modeling and sampling, we thus again

encounter a trade-off between precision (the average absolute value of the error) and bias

(a systematic error to the benefit of some firms and to the detriment of others). Depending

on the composition of their portfolio, firms may know whether they are likely to benefit

of a ”pessimistic” or ”optimistic” light touch review of all patents. This systematic error

component is thus likely to lead to sustained controversies regarding the exact methodology

of assessment. Sampling allows to increase the accuracy of any individual assessment,

it thus trades systematic, predictable assessment error against random, unpredictable

sampling error. While a firm may significantly benefit or lose from sampling error, ex ante,

this error affects all firms the same way.

While there can thus be a trade-off between precision and bias in the choice between

light-touch assessment of larger samples or populations and more thorough assessments

of smaller subsamples, there are situations in which one method clearly dominates. For

small average sample sizes (such as in our case, where we use 1,000 patents to determine

essentiality ratios in 35 different portfolios), sampling error is large; a lighter-touch

assessment of all patents with zero-centered assessment error may thus be the best method

for this assessment. When sample sizes get larger, random sample error diminishes, whereas

the systematic component (bias) of assessment errors remains - for larger portfolios (or

larger sample sizes), thorough assessments within a sample are both more precise and less

susceptible to bias than less thorough assessments of larger numbers of patents.

7 Conclusion

This article compares different methods of determining the share of different firms’ declared

SEPs that are actually essential. In particular, we have compared three viable approaches:

sampling, predictive modeling, and light-touch reviews of all patents. We have derived

two basic insights from our comparisons:

First, different methods are best suited to different contexts. While sampling is

clearly the most suitable method to determine essentiality ratios in large patent portfolios,

sampling-based estimates may become highly imprecise when sample size decreases. For

an assessment of smaller populations and portfolios, a lighter assessment of every single

patent can produce more accurate predictions than extrapolating the outcomes of more

rigorous assessments in a random sample. For the assessments of essentiality ratios in larger

numbers of smaller and medium size portfolios, predictive modeling can be an attractive

solution. As predictive modeling can use the entire sample for making predictions about

the out-of-sample essentiality ratios of each individual portfolio, it can make more accurate

predictions than sampling alone, especially for the smaller portfolios in the population.
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Second, the choice of a method involves a trade-off between bias and precision. While

light-touch assessments of every patent and predictive modeling can - in some situations -

produce smaller errors on average than sampling, they are prone to producing systematic

error, i.e. bias that systematically favors some firms to the detriment of others. While

sampling error may lead analysts to over- or under-represent the true share of essential

patents in a particular firm’s portfolio, each firm is a priori similarly likely to benefit

or to lose. A verifiably random sample selection is thus inherently fair, and immune to

manipulation.

The errors produced by predictive models and short-cuts in the examination of individ-

ual patents, on the other hand, are largely systematic errors. It must thus be assured that

the process is carried out by parties that have no interest in biasing the outcome of the

assessment. Furthermore, firms are likely to know (or to learn) which particular variant

of each method is susceptible of favoring them. Similar to existing controversies over

other aspects of FRAND determinations, it is thus plausible that different stakeholders

will have entrenched preferences for specific SEP determination methods, with little hope

for consensus. In that light, the (relatively modest) potential disadvantage of random

sampling as compared to other methods in terms of precision may be a price worth paying

in exchange of a prediction that is axiomatically unbiased and produces axiomatically

accurate confidence intervals.

In addition to these fundamental insights, we have gained some insights into the best

application of different methods. For predictive modeling, we have compared three different

models. While our initially preferred patent-TS-specific model makes use of the greatest

amount of information, and a model with firm fixed effects (effectively a hybrid between

predictive modeling based on observable patent characteristics and pure sampling) has

the best in-sample performance, a simpler direct logistic regression model (in line with

the model proposed by Brachtendorf et al. (2020)) made the most accurate out-of-sample

predictions. This underlines the importance of assessing out-of-sample performance of

predictive models, and in particular their ability to predict the specific empirical magnitude

of interest, rather than focusing on in-sample predictive power.

As for the uncertainty underlying the assessment of each individual patent, our results

suggest that the reliability of these assessments does not primarily hinge on the rate

at which different examiners agree on the essentiality of individual patents, but on the

distribution of assessment errors over firm portfolios. In this regard, a patent count based

on a probabilistic assessment of edge case patents is preferable to a ”conservative” approach

that only counts confirmed SEPs (or only discards those declared SEPs that are clearly

not essential).

Overall, our results confirm that for the determination of essentiality shares in larger

portfolios (and a fortiori the entire population of declared SEPs), thorough assessments of

(possibly relatively small) randomly selected samples are the most accurate and unbiased

method. This suggests that policy proposals that aim at evaluating the essentiality of

every declared SEP would likely lead to an inefficient use of scarce examination resources.

We do not, however, take any position here on whether counts of declared SEPs,

adjusted for ”essentiality ratios”, should be used at all for the determination of FRAND

licensing terms. To be viable, such determinations would also need to account for the

existing significant heterogeneity in the value of different SEPs. In that light, uncertainty
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regarding the number of truly essential patents in different firms’ portfolios - sometimes

portrayed to be among the most important sources of disagreements in SEP licensing - is

perhaps one of the more easily solvable challenges in the valuation of SEP licenses.
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A Appendices

A.1 Appendix 1: Descriptive Statistics

assignee norm number patents number families number families sample
Samsung 3546 1985 139
Huawei 3210 1862 142
Qualcomm 2746 1535 98
Nokia 1992 1350 124
LG Electronics 2437 1238 118
Ericsson 1465 687 62
Sharp 1035 662 45
NTT 391 250 20
ZTE 301 227 64
InterDigital 647 207 23
HFI Innovation 265 112 9
ETRI 206 103 12
Apple 144 102 26
Mediatek 129 85 8
Blackberry 213 72 14
NEC Corp. 160 58 5
Guangdong Oppo 68 53 8
CATT 59 52 8
Lenovo 81 49 2
Asustek Comp. 43 39 3
Panasonic 65 30 3
HTC Corp. 35 26 3
Fujitsu 107 25 3
Sony 70 21 3
KT CORP. 26 20 3
Intel 21 17 3
FG Innovation 13 13 2
Tsinghua Holdings 12 11 1
Convida Wireless 12 10 3
ITRI 10 9 3
Coranci 6 5 2
Koninkl. Philips 4 4 1
Natnl. Instruments 7 3 1
Koninkl. KPN 5 2 1
Google 1 1 1
Total 19488 10860 960

Table 14: Descriptive statistics - number of patents and INPADOC patent
families by assignee
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assignee norm fullymapped partially notmappable declared ts per patent ts decl and mapped per pat share declaredts mapped mappedbutnotdeclared per patent
Samsung 0.157 0.321 0.521 2.264 0.536 0.237 0.257
Huawei 0.0699 0.203 0.727 6.979 0.510 0.0731 0.0839
Qualcomm 0.0918 0.296 0.612 3.194 0.520 0.163 0.102
Nokia 0.0960 0.240 0.664 1.480 0.336 0.227 0.184
LG Electronics 0.0847 0.458 0.458 2.517 0.619 0.246 0.347
Ericsson 0.109 0.297 0.594 1.406 0.438 0.311 0.156
Sharp 0.178 0.422 0.400 4.600 0.844 0.184 0.222
NTT 0.150 0.600 0.250 1.400 0.850 0.607 0.450
ZTE 0.0769 0.323 0.600 5 0.631 0.126 0.0923
InterDigital 0.375 0.375 0.250 2.250 1.417 0.630 0.292
HFI Innovation 0 0.444 0.556 2 0.556 0.278 0.333
ETRI 0.167 0.333 0.500 5.667 0.917 0.162 0.167
Apple 0.192 0.346 0.462 3.192 0.769 0.241 0.269
Mediatek 0.444 0.111 0.444 1.333 0.444 0.333 0.556
Blackberry 0.313 0.250 0.438 3.313 1.188 0.358 0.125
NEC Corp. 0.200 0.400 0.400 2.800 0.600 0.214 0.400
Guangdong Oppo 0 0.125 0.875 1.500 0.375 0.250 0
CATT 0 0.125 0.875 4.250 0.125 0.0294 0
Lenovo 1 0 0 1 0.500 0.500 0.500
Asustek Comp. 0 0.333 0.667 1.333 0.667 0.500 0
Panasonic 0.333 0.333 0.333 1 0.667 0.667 0
HTC Corp. 0.333 0 0.667 1.333 0.333 0.250 0
Fujitsu 0 0.333 0.667 3.667 1 0.273 0.333
Sony 0 0.333 0.667 1.667 0.667 0.400 0
KT CORP. 0.667 0 0.333 2.333 1 0.429 0
Intel 0 0 1 3.333 0 0 0
FG Innovation 1 0 0 2.500 1.500 0.600 0
Tsinghua Holdings 0 0 1 1 0 0 0
Convida Wireless 0 1 0 2.333 1.667 0.714 0
ITRI 0 0 1 2 0 0 0
Coranci 0 1 0 1 1 1 0
Koninkl. Philips 1 0 0 1 1 1 0
Natnl. Instruments 0 0 1 1 0 0 0
Koninkl. KPN 0 1 0 2 2 1 0
Google 0 1 0 4 0 0 4
Total 0.124 0.312 0.564 3.284 0.582 0.178 0.197

Table 15: Descriptive statistics - Mapping status of sample patents by
assignee

A.2 Appendix 2: Semantic scoring methodology

In order to semantically compare declared patents to declared TS (technical specifications)

a parsing algorithm indexes and separates all independent patent claims as well as all

independent sections of each TS. The indexing is based on the Lucene based Solr index

(Clancy et al., 2019). If the declaration does not indicate a version number of the TS

to which the patent is declared to be potentially essential, the latest TS version (as of

October 2020) is identified and considered.

Each distinct patent claim and each distinct TS sections are semantically compared.

TS documents have 80-350 sections, patents have up to 5 independent claims. The word

count of sections is on average 2.5 times higher compared to the word count in claims.

For each declared patent TS combination, we identify between 400-1,750 patent claim-TS

section combinations. Each combination is semantically compared, and given a semantic

similarity score. We identify the highest-scoring patent TS combinations out of all possible
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patent claim TS section combinations, identifying the claim number, the section number,

and the semantic score. The model used for calculating the score is the Latent Semantic

Indexing (LSI) model, which follows a 5-step approach:

1. We use the different sections of each standard to be compared to worldwide indepen-

dent patent claims for the textual input of the similarity analysis.

2. We create a word vector matrix (term-document matrix) where each row corresponds

to a term (of the documents of interest), and each column corresponds to a document.

Each element (m,n) in the matrix corresponds to the frequency that the term m

occurs in document n. We apply Log Entropy as local and global term weighting.

3. Singular value composition (SVD) is used to reduce this matrix to a product of three

matrices, one of which has non-zero values (the singular values) only on the diagonal.

4. Dimensionality is reduced by deleting all but the k largest values on this diagonal,

together with the corresponding columns in the other two matrices. This truncation

process is used to generate a k-dimensional vector space. Both terms and documents

are represented by k-dimensional vectors in this vector space.

5. The relatedness of any two objects represented in the space is reflected by the

proximity of their representation vectors, in our case: cosine measure.

Latent semantic indexing, is a class of techniques where documents are represented

as vectors in term space. The semantic analysis of a corpus is the task of building

structures that approximate concepts from a large set of documents. The LSI model

produces semantic similarity scores for each patent claim and technical specification section

combination. Scores are presented in percentages of similarities.
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