Tax News

Identifying the Household Consumption Response to Tax Expectations using Municipal Bond Prices

Lorenz Kueng*

Kellogg School of Management, Northwestern University

March 11, 2013

Abstract

Although theoretical models often emphasize fiscal foresight, most empirical studies neglect the role of news, thereby underestimating the total effect of tax changes. Measuring the path of expected future tax rates from the yield spread between taxable and tax-exempt bonds, this paper finds that consumption of high-income households increases by close to 1% in response to news of a 1% increase in expected after-tax lifetime income, consistent with the basic rational-expectations life-cycle theory. Using novel high-frequency bond data, I develop a model of the term structure of municipal yield spreads as a function of future top income tax rates and a risk premium. Testing the model using the presidential elections of 1992 and 2000 as two natural experiments, this paper shows that financial markets forecast future tax rates remarkably well in both the short and long run. Combining these market-based tax expectations with consumption data from the Consumer Expenditure Survey shows that households who have lower income, less education, or are more credit constrained respond less to news. However, the same households also respond one-for-one with large news shocks, consistent with rational inattention. Overall, the results in this paper suggest that ignoring anticipation effects biases estimates of the effect of fiscal policy downward.

*l-kueng@kellogg.northwestern.edu. I am grateful to Alan Auerbach and Yuriy Gorodnichenko for their encouragement and support throughout this project. David Card, Pierre-Olivier Gourinchas, Dwight Jaffee, Patrick Kline, Nick Li, Dina Pomeranz, Demian Pouzo, Emmanuel Saez, Adam Szeidl, Mu-Jeung Yang; seminar participants at the Universities of Basel, Barcelona, Berkeley, Columbia, Northwestern, Santa Barbara LAEF, Stockholm, Toronto, Toulouse, Virginia, Washington; the Federal Reserve Banks of Boston, Kansas City, New York, and San Francisco; the Bank of Finland, Dartmouth College, ETH Zurich, Penn State University, and the Study Center Gerzensee all provided valuable feedback. I thank Daniel Feenberg for support with mapping the CEX to TAXSIM, Kevin Moore for sharing his code for the SCF, and Craig Kreisler for patiently answering all my questions about the CEX.
1 Introduction

The effectiveness of fiscal policy as a tool to stabilize business cycles is widely debated among both academics and policy-makers, and this debate can become heated at times. The foundation for this disagreement is the difficulty in credibly identifying both the timing and the magnitude of expected future tax shocks, and in estimating the transmission of those shocks in the economy through anticipation effects. This paper tackles these problems in the following way: first, it measures the expected timing and magnitude of future personal income tax shocks using a novel high-frequency data set of municipal bond yields with different maturities; second, it combines these market-based expectations with micro-level data from the Consumer Expenditure Survey (CEX) to estimate the effect of tax news shocks on household consumption.

To identify news about future taxes, I exploit the differential tax treatment of two types of bonds. Interest on municipal bonds is tax-exempt, while interest on Treasury bonds is subject to federal income taxes; thus, relative price changes between municipal and Treasury bonds reflect changes in expected future tax rates, holding fixed other risk factors. I go beyond identification of the timing of news to directly measure the entire path of expected tax rates. My tax news shocks measure not only when households receive information, but also what information they receive. I infer the entire path of expected tax rates over a forecasting horizon of up to 30 years at any given point in time by comparing municipal yield spreads of maturities of 1 to 30 years. The fact that different bonds have different maturities quantifies the degree of tax foresight, since yield spreads of bonds with different maturities reflect information about future taxes over different horizons. To take into account factors other than tax news, I derive a model that relates the term structure of municipal yield spreads to the path of expected tax rates and a risk premium.

Identifying the entire path of expected tax rates is important for testing the basic rational-expectations life-cycle model of consumption, as the theory predicts that consumption responds one-for-one to changes in expected after-tax lifetime income. The term structure of municipal yield spreads identifies the expected persistence of a tax shock, which is a crucial factor that determines the optimal consumption response according to the theory. For instance, if a tax change is expected to be only transitory, then the theory predicts that consumption does not respond much. On the other hand, if a tax reform is expected to have a large persistent component, then consumption should respond much stronger.

Data on municipal debt ownership from the Flow of Funds Accounts and the Survey of Consumer Finances (SCF) suggest that the marginal municipal bond investor is a household near the top of the income distribution. The marginal tax rate identified by
the municipal yield spread should thus be the personal income tax rate of high-income households. Moreover, the SCF shows that the position of the marginal investor in the income distribution is stable over time. Changes in the yield spread therefore reflect news about future tax rates rather than changes in the marginal investor holding fixed future tax rates.

I formally test this conjecture about the marginal investor’s tax rate using the presidential elections of 1992 and 2000 as two natural experiments and daily data from a political prediction market as source of additional variation. Changes in election probabilities reflect changes in expected future tax rates because each candidate had a very different tax reform proposal during both elections. With this additional data, I show that (i) financial markets have strong fiscal foresight with respect to both the timing and the magnitude of the shocks, and (ii) that the marginal tax rate identified by the municipal yield spread is indeed the personal income tax rate of households near the top of the income distribution.

This paper provides a new test of the basic rational-expectations life-cycle hypothesis by combining the market-based tax news shocks with data from the CEX to calculate changes in expected after-tax lifetime income for each household. The basic rational-expectations life-cycle theory implies that consumption should move one-for-one with changes in the expected after-tax lifetime income.\(^1\) Starting with the sample of high-income households, for which the identified news shock is most directly related to changes in expected after-tax lifetime income, this paper finds that nondurable consumption increases by 1.1% in response to news about a 1% increase in after-tax lifetime income. The prediction of the rational-expectations life-cycle theory that current consumption moves one-for-one with lifetime income cannot be rejected; however, the hypothesis that there is no response to tax news is strongly rejected.

Using household-level data allows me to explore the heterogeneity of responses across households and the importance of non-linearities. Extending the sample to include all households that pay taxes at some point in their lifetime – and are therefore potentially affected by future tax reforms – I find that the consumption response in the full sample is only 0.5%. This estimate is sufficiently precise to reject responses of 0% and 1%. Moreover, I find that the response varies significantly, both with the absolute size of the shock and with household characteristics. If all households affected by income tax reforms are included in the sample, then consumption responds by 1.1\% using the largest 50\% of news shocks in absolute value, which is consistent with rational inattention. Furthermore,

\(^1\) The term basic refers to the fact that the household consumption model presented below abstracts from several issues, in particular from endogenous labor supply, precautionary savings, and heterogeneity in discount rates across households.
consumption of more educated, less cash-constrained, or richer households responds one-for-one to both large and small news shocks.

To the best of my knowledge, this paper provides the first direct estimates of the effect of news about future after-tax income on consumption at the household-level. The lack of direct estimates of news effects at the household-level is due primarily to the difficulty in identifying expectations about future income changes that vary across households. Previous research either uses survey expectations – which are based on responses to hypothetical questions (for example how much would you spend now if your income went up by $1,000 next year?) and thus could be different from actual choices made by households – or estimates news shocks directly from observed behavior. Inferring expectations from observed behavior requires strong assumptions and might lead to circularity when the news shocks are used to test the same theory that was employed to infer expectations; see for example Blanchard, L’Huillier and Lorenzoni (2009). In contrast, the news shocks analyzed in this paper come from auxiliary data on bond prices, thus avoiding any circularity between the identification of the news and the estimated response to news.

This paper contributes to several strands of literature. The first strand focuses on the effects of expectation formation and news shocks on the economy. While most of this literature is theoretical, this paper instead provides an empirical foundation for these theoretical findings. The responses in the sub-samples are consistent with this literature, which emphasizes heterogeneous expectation formation and the importance of non-linearities in the presence of small adjustment frictions. This heterogeneity of consumer responses observed in the cross-section is obscured in studies that use aggregate data or a representative agent framework.

The second strand of literature is research on household consumption behavior. The basic rational-expectations life-cycle theory of household consumption has two central implications: first, consumption should not respond to predictable income changes; second, consumption should respond one-for-one to news about changes in after-tax lifetime

2 There is a large literature on consumption-based asset pricing; however, these theories impose restrictions on the joint distribution of asset returns and (aggregate) consumption, and do not separately test consumption behavior. Consumption theory is usually the starting point from which one derives implications for asset prices.

3 Fuhrer (1988), Batchelor and Dua (1992), and Pistaferri (2001) rely on subjective survey expectations. Schmitt-Grohe and Uribe (2010) and Barsky and Sims (forthcoming) infer news shocks from observed behavior, both of which use aggregate data.

5 This literature is among the oldest and largest in economics – see for example Deaton (1992), Hayashi (1997), Attanasio (1999), and Jappelli and Pistaferri (2010) for a survey.
income. There is a large and growing literature that tests the first implication of the rational-expectations life-cycle theory either by instrumenting for current income with variables known in advance or by using exogenous changes in predictable income provided by natural experiments.6 This literature generally rejects the basic rational-expectations model by finding significant consumption responses to predictable income changes – that is, it finds that consumption is in fact excessively sensitive to predictable income changes.

The results in this paper are not directly comparable with the excess sensitivity coefficients. The estimated response to predetermined cash-on-hand that is reported in these studies typically measures the response of consumption to one-time cash receipts either in real dollars or as a fraction of current income. In contrast, the estimates reported in this paper show the percentage change of consumption in response to a 1% change in expected lifetime income. This distinction is important if one interprets the results of this paper in the context of a model with optimization frictions such as limited attention or costly information. Nonetheless, the results are related to the excess sensitivity literature, since they test the same model. If all households were cash-on-hand consumers, consumption should not respond to news but only to changes in current disposable income.

Finally, this paper addresses an important, but still unsettled, question posed by Campbell and Deaton (1989): if aggregate income is non-stationary, why is aggregate consumption so smooth? If consumption should move one-for-one with permanent shocks to income, and there is evidence that aggregate income has a unit root, then consumption should be more volatile than observed in the data. That aggregate consumption does not satisfy the restriction of the basic rational-expectations life-cycle model on the joint distribution of consumption and income is called the excess smoothness puzzle. The persistence of the income process is important not only for testing consumption theory, but also for asset pricing. The main difficulty in resolving this puzzle is statistical power: with a finite time series of aggregate data it is impossible to statistically differentiate between a unit root and a highly persistent but stationary process. Using household-level data instead of aggregate time series allows me to provide new evidence on this important question. The estimate of the response of household consumption to a persistent income shock of 1% is only 0.5% when I use the full sample, so on average household consumption exhibits excess smoothness. However, the responses estimated in sub-samples that are conditional on family characteristics or the size of the news shock are one-for-one, and do

6 Employing aggregate data, Campbell and Mankiw (1989) use an instrumental variables approach, while Poterba (1988) uses tax reforms as natural experiments. Another large segment of the literature uses cross-sectional variation in predictable income changes to test the first implication of the basic rational-expectations life-cycle theory; see for example, Shapiro and Slemrod (1995), Souleles (1999, 2002), Parker (1999), Shapiro and Slemrod (2003), Johnson, Parker and Souleles (2006), and Agarwal, Liu and Souleles (2007).
not show excess smoothness.

The paper is structured as follows. Section 2 derives rational expectations of future personal income tax rates from a model of the relative spread between taxable and tax-exempt bond yields. This model is then tested using two natural experiments. Section 3 derives and tests the second implication of the basic rational-expectations life-cycle theory, that household consumption should respond to news about changes in the expected after-tax lifetime income. Section 4 concludes.

2 Tax Expectations from Municipal Yield Spreads

In order to measure fiscal foresight in the economy the econometrician needs to identify information sets that are at least as large as the ones used by the agents. This challenge goes back at least to Hansen, Roberds and Sargent (1991) and has recently been emphasized by Leeper, Walker and Yang (2011). I identify rational information sets using expectations that are based on asset prices. Under informational efficiency asset prices aggregate information and reflect the largest public information set available at any given point in time. The yield spread between Treasury and municipal bonds reflects expected future tax rates because interest income from Treasury bonds is taxable while interest from municipal bonds is tax-exempt. At the same time, the yield spread also contains a premium to compensate for other factors such as liquidity risk and tax uncertainty.

In this section I derive the path of expected tax rates from relative spreads between Treasury and municipal bond yields. I discuss factors other than tax news that might affect the yield spread, and I provide strong evidence that the other main determinant of the spread is related to liquidity risk. Two independent pieces of data, the Flow of Funds and the Survey of Consumer Finances (SCF), provide suggestive evidence that the marginal investor is a household near the top of the income distribution. Furthermore, the marginal investor’s position in the income distribution is stable over the sample period from 1977 to 2001, which is an important finding since it shows that changes in the yield spread reflect changes in expected future tax rates rather than movements across tax brackets by the marginal investor, holding fixed other risk factors. I use two natural experiments that provide additional variation at daily frequency to validate the tax news shocks and to assess the degree of foresight over a horizon of 1 to 30 years. Using these natural experiments I formally test the hypothesis that the marginal tax rate implied in the municipal yield spread is the personal income tax rate of an individual near the top of the income distribution. Finally, I extract the entire path of expected future tax rates at each point in time over the entire sample period from 1977 to 2001 using the identified
marginal tax rate of the marginal investor to control for other risk factors.

2.1 Factors other than Expected Tax Rates

I use a novel data set of municipal bond yields at daily frequency from 1983 on and at weekly frequency since 1977, described in more detail in Kueng (2012b). The municipal bond yields are based on an index of state bonds that have a AAA rating and are general obligations. I use state bonds because of the higher liquidity compared to other types of municipal bonds; see for example Harris and Piwowar (2004). General-obligation bonds are backed by the full faith and credit of the issuing state, similar to the backing of Treasury bonds, and prime-grade general-obligation municipal bonds are therefore essentially free from default risk. Moreover, municipal bonds in general and general-obligation bonds in particular have a high recovery rate. For instance, Fitch Ratings assumes that general-obligation municipal bonds recover 100% of par within one year of default. Since the Civil War no state has permanently defaulted on its general-obligation debt. Hempel (1971) looks at the Great Depression, which is the most recent period with significant defaults on municipal debt. He shows that between 1929 and 1937 all outstanding municipal bonds – consisting mostly of debt of lower quality than general-obligation bonds – defaulted at an annual rate of 1.8%. However, 97% of the defaulted debt was eventually repaid. The last state to temporary default on its general obligations was Arkansas in 1933. However, what matters for the yield spread is the credit risk relative to Treasury bonds. There are differences between debt issued by states and local municipalities, and they relate mostly to the procedure in the case of a default. The 11th Amendment of the U.S. Constitution guarantees the sovereign status of a state. This implies that states cannot be sued and state property cannot be seized by investors without the consent of the state. The only exception where the Supreme Court accepted jurisdiction were suits between the federal government and a state (United States v. North Carolina, 1890) and between two states (South Dakota v. North Carolina, 1904); see English (1996). Therefore, there is no bankruptcy mechanism for U.S. states. Local municipalities in some states on the other hand can enter Chapter 9 of the Bankruptcy Code, which is similar to Chapter 11 for corporate defaults. For a more detailed discussion, see Ang and Longstaff (2011).

The other main class of municipal bonds is revenue bonds. The credit worthiness of revenue bonds is tied to the underlying project that they finance. For instance, a state might issue a revenue bond to finance a new bridge, and the bridge might in turn generate revenue by collecting a toll. If the income from the toll falls short of the interest costs, the state might default on the revenue bond without defaulting on any other bond. This selective default is not possible with general-obligation bonds.

In Kueng (2012b) I compare the in-sample default rates between similarly rated corporate and municipal bonds. I show that the later have a much lower credit risk even conditional on the same credit rating. I also analyze whether there is evidence that rare default events affect the yield of AAA general-obligation state bonds, but do not find any.

While there have been defaults of general-obligation bonds since the Civil War, the payment obligations were all satisfied later on. Arkansas eventually paid its general-obligation bondholders in full by
bonds. In this context it is important to note that although the U.S. has legally never defaulted on its debt, it changed the value of a U.S. dollar in terms of gold in the Gold Reserve Act of 1934. This of course is de facto a default, with bondholders suffering a real loss, while Arkansas’ default in 1933 resulted ‘only’ in delayed repayment.

State personal income taxes are another factor that might confound the relationship between the investor’s marginal federal tax rate and the municipal yield spreads. While interest on municipal bonds is in general exempt from federal income taxes and interest on Treasury bonds is exempt from state and local income taxes, nothing prevents states from taxing interest on municipal bonds. Table 1 shows that many states exempt municipal bond interest from state and local income taxes, either for all or at least for in-state investors, and several states do not collect personal income taxes at all. Moreover, investors have strong incentives to avoid paying state taxes on municipal bonds, for instance by investing in municipal bonds of their state of residence. Figure 1 compares the 10-year Treasury yield with 10-year municipal yields of four states, each of which taxes municipal interest differently. The four different tax treatments correspond to (almost) all possible combinations listed in Table 1. With the exception of Illinois, all state bonds shown have a AAA rating and are general obligations. For Illinois there are no AAA general-obligation bonds available in the sample, so instead I use AA rated state bonds that are insured against default risk so that they are comparable to general-obligation bonds. Figure 1 shows that the municipal yields are very similar, in particular compared to the yield on Treasury bonds, despite the different tax treatment of municipal bond interest in the four states. This result strongly suggests both that state taxes are not as an important determinant of municipal yield spreads as federal taxes and that default risk is relatively small for highly rated general-obligation state bonds.

Furthermore, the small dispersion

12 Reinhart and Rogoff (2011) for instance classify the Gold Reserve Act of 1934 as a default on U.S. federal debt.
13 The exception is Tennessee, which taxes both municipal and Treasury interest income.
14 The exception is again Tennessee for which I do not have historical municipal yield data.
15 The main remaining difference in default risk between an insured and a general-obligation bond is counter-party risk, i.e. the risk that the insurer defaults at the same time as the insured municipal bond.
16 State income taxes could significantly affect the municipal yield spread if the marginal investor lives in a state with high income tax rates and if her municipal bond interest income is taxable. The last two columns of Table 1 show maximum state income tax rates for 1977-2010. The reason for the small yield spread between the state bonds shown in Figure 1 is twofold. First, these states have relatively low top income tax rates in this period: 2.8% in Pennsylvania, 5.6%-5.95% in Massachusetts, 3% in Illinois, and 0% in Texas. Second, the fact that state taxes are deductible from federal taxable income further reduces...
of AAA general-obligation municipal yields suggests that the relative liquidity shocks are common to all municipal bonds and have only a small idiosyncratic component. Taking an index of AAA general-obligation bonds further reduces the idiosyncratic component by averaging out any remaining idiosyncratic liquidity and state-specific shocks.17

2.2 A Model of Break-Even Tax Rates (BETR)

Interest income from Treasury bonds is exempt from state and local taxes, but is subject to federal income taxes, while interest on municipal bonds is exempt from federal income taxes. Moreover, as shown in Table 1, most states also exempt municipal bonds from state and local taxes, either for all investors or at least for in-state investors.

In order to interpret the yield data it is important to note that the relative municipal yield spread is different from the expected tax rate. Similarly, the yield spread between nominal and real Treasury bonds – the so-called break-even inflation rate – does not equal the expected rate of inflation. However, in both cases the yield spreads are related to the underlying expectations. To formalize this relationship I start with the definition of the par yield of a Treasury bond. Since Treasury bonds are taxed based on their imputed par yield, the par bond is the natural concept when analyzing the effects of taxes on bond prices, while zero coupon bonds are the starting point of most fixed-income models, which abstract from taxes.18

The yield $y_{t,m}$ on a Treasury bond maturing in m years and selling at par at date t is implicitly defined by19

$$1 = \sum_{s=1}^{m} \mathbb{E}_t [D_s (1 - \tau_s) y_{t,m}^T] + \mathbb{E}_t [D_m].$$

\(D_s\) is the stochastic discount factor of after-tax income s years ahead.20 In order to satisfy the impact of state tax rates on the yield spread. Finally, bondholders seem to demand a slightly higher yields on Illinois bonds, consistent with the fact that Illinois taxes both in- and out-of-state municipal income.

17 In a previous version of this paper I have calculated average state top income tax rates and checked whether my results are sensitive to the treatment of state income taxes. Since there is little variation in state income tax rates over my sample period, and since state income tax rates are lower than federal income taxes, I could not find any tangible effect of state income taxes on my results.

18 Kueng (2012c) provides a detailed overview of the tax treatment of bonds since 1970.

19 To simplify notation I abstract here from the fact that coupon payments are semi-annual rather than annual, but I take this into account when analyzing the data.

20 A word on notation: Whenever possible I use the first subscript – usually t – to denote calendar or “household time” and the second subscript – usually m or s – to denote the forecast horizon in years. For example, $y_{t,m}$ is the yield at date t (today) on a Treasury bond that matures in m years. For bond yields, calendar time t is daily or weekly before or after 1983, respectively. “Household time” t in the CEX is quarterly such that $\Delta_t x_t$ is the quarterly change of x_t. However, since the CEX is a monthly
equation (1), the Treasury par yield y^T needs to increase in response to an increase in expected future tax rates $\mathbb{E}_t \tau_s$, holding fixed the discount factor D.

In practice, factors other than taxes influence the municipal yield spread, and the discussion above suggests that these factors are mainly related to liquidity. To minimize the effect of liquidity shocks on the yield spread I use off-the-run Treasury bonds which are less liquid than on-the-run issues and are therefore more similar to municipal bonds, and I use state bonds which are the most liquid municipal bonds. However, the off-the-run Treasury bond market is still much more liquid than the most liquid municipal bond market.21 To account for any remaining risk factors other than taxes I introduce a latent stochastic shock λ for holding municipal bonds. The par yield y^M_t of a similar tax-exempt municipal bond is given by

$$1 = \sum_{s=1}^{m} \mathbb{E}_t[D_s(y^M_{t,m} - \lambda_{s,m})] + \mathbb{E}_t[D_m].$$

(2)

To satisfy equation (2), the municipal par yield y^M has to increase to compensate a positive liquidity shock λ, holding fixed the discount factor D.22,23

The marginal investor is indifferent between investing one more dollar in a Treasury or a municipal bond with the same maturity. Let M be the longest maturity available. I solve (1) and (2) as a function of the relative municipal yield spread y^M/y^T to obtain24

$$\theta_{t,m} \equiv 1 - \frac{y^M_{t,m}}{y^T_{t,m}} = \sum_{s=1}^{m} \mathbb{E}_t\left[D_s\left(y^M_{t,m} - \lambda_{s,m}\right)\right] + \mathbb{E}_t[D_m]$$

$$\equiv w^{(m)}_t \mathbb{E}_t \tau - \Lambda^{(m)}_t.$$
The sum of the liquidity premium Λ^λ and the tax risk premium Λ^τ is $\Lambda^{(m)}_t = \Lambda^\lambda_{t,m} - \Lambda^\tau_{t,m}$.

The expected tax path over the horizon M is given by the vector $E_t\tau = (E_t\tau_1 \ldots E_t\tau_M)'$.

$w_t^{(m)} = (w_t^{(m)} 1 \ldots w_t^{(m)} 0 \ldots 0)'$ is the vector of annuity weights such that $w_t^{(m)}\sum s=1^m w_t^{(m)} E_s\tau_s$ is the annuity value of the path of expected tax rates over the maturity m of the two bonds.

In analogy to the break-even inflation rate I call θ the break-even tax rate (BETR). If there were no uncertainty and if taxes were constant over the maturity of the two bonds then the break-even tax rate equals the marginal tax rate of the marginal investor, i.e. $\theta_{t,m} = \tau$. If one allows for uncertainty about future tax rates and liquidity risk then the relationship between expected tax rates and break-even tax rates becomes more complicated. Equation (3) reveals that the BETR is in general a weighted average of expected future tax rates over the maturity of the bonds minus a premium Λ. Since the market for Treasuries is more liquid than the municipal bond market, and because liquidity demand is high in bad times, the liquidity premium Λ^λ is likely non-negative on average.

Marginal income tax rates are low in bad times because of the progressivity of the income tax and the possibility of countercyclical tax policies. After an extensive analysis of the narratives surrounding all major post-war tax changes, Romer and Romer (2010) conclude that all income tax changes from 1980 to 2001 – with one minor exception in 2001 – are not countercyclical policies or spending related but motivated by concerns about the long-run growth rate or the federal debt. Hence, the tax risk premium Λ^τ is likely primarily due to the progressivity of the income tax over the period 1977-2001. The progressivity induces an insurance mechanism by paying larger after-tax interest in bad times and lower after-tax income in good times. The tax premium is therefore likely non-positive.

Stacking equation (3) for the entire term structure of length M I obtain a system of equations that provides a mapping between the M break-even tax rates θ_t and the underlying path of expected forward tax rates $E_t\tau$ over the forecasting horizon of 1 to M.

25 When I calculate the weights in the empirical section below I take into account that coupon payments are semi-annual and use $E_t[D_s] = (1 + y_t^{M/2})^{-2s}$.

26 In the absence of discounting, the first m elements of $w_t^{(m)}$ are equal to $1/m$. With discounting, the weights are generally decreasing in m such that $w_t^{(m)} < 1/m$. If the tax-exempt yield curve steepens, then future income is discounted more heavily, leading the weights on future tax rates to decrease.

27 To quantify Λ^τ I estimate the following population moments: $\min_s \{\text{Cov}(D_s, \tau)\}$, $\max_s \{\text{Cov}(D_s, \tau)\}$, and $\sum s E_t D_s$. The estimates are -0.0013, 0.00128, and 13.80, the latter with a standard deviation of 2.02. Since Λ^τ is only of order $1/1000$, this calculation suggests that the tax risk premium is non-positive and negligible. However, this is only suggestive since I use the current yields to calculate D_s. However, yields reflect only first moments of D_s. For a recent study that separately estimates the liquidity and tax uncertainty premium, see Longstaff (2011). In this paper I do not attempt to separate these two risk factors, and I refer to them jointly as the (liquidity) risk premium.
years at any point in time t,
\[\theta_t = W_t \mathbb{E}_t \tau - \Lambda_t. \quad (4) \]

W_t is the M-by-M lower triangular annuity weighting matrix $[w_t^{(1)} \ldots w_t^{(M)}]'$ and the vector of risk premia is given by $\Lambda_t = (\Lambda_t^{(1)} \ldots \Lambda_t^{(M)})'$.

[Figure 2 about here.]

2.3 The Marginal Tax Rate of the Marginal Investor

In order to recover the underlying path of expected tax rates $\mathbb{E}_t \tau$ one needs to know the marginal tax rate of the marginal investor and correct for the risk premium Λ_t. Figure 2 contrasts the 2- and the 15-year BETR – both the raw data and the trend component after applying a low-pass filter – with the marginal tax rate of the top 1% of the income distribution, taken from Saez (2004). The 2-year BETR follows the top marginal tax rate closely, with the exception of the early 1990s, suggesting that the marginal investor is a household in the top of the income distribution. This finding is consistent with the fact that incentives to hold tax-exempt debt increase with the effective marginal tax rate. Importantly, movements in the 2-year BETR anticipate movements in the top rate. The 15-year BETR, which averages expected future tax rates over a longer horizon, behaves differently. It sharply decreases during the early 1980s in anticipation of the Reagan tax cuts and stays relatively constant until the late 1990s when it starts to decline again in anticipation of the Bush tax cuts of the early 2000s. The fact that the time series of BETRs with different maturities do not move one-for-one strongly suggests that the bond market not only forecasts the timing of future income tax changes but also the expected path of tax rates. Therefore, bond prices determine not only the expected timing of future tax changes but also the expected persistence of such shocks.

For the analysis of the response of household consumption to tax news in the next section it is important to identify the entire path of expected tax rates $\mathbb{E}_t \tau$ from the term structure of break-even tax rates θ_t. According to the basic rational-expectations lifecycle model, consumption should respond to changes in the expected after-tax lifetime income. In particular, two tax reforms that affect the expected after-tax lifetime income by the same amount should have the same effect on current consumption independent of the timing of the tax changes (abstracting from liquidity constraints and precautionary

\(^{28}\) Saez (2004) uses annual tax return data from the Internal Revenue Service (IRS). I transform Saez’s annual tax series to monthly frequency using the months at which withholding tables change as turning points. The only exception is OBRA 1993 (discussed below) that was introduced retroactively. In this case I use the date at which the bill was signed into law by President Clinton.
saving). In order to compute the expected after-tax lifetime income one needs to identify the entire path of expected future tax rates.

Figure 2 also shows that the 2-year and the 15-year break-even tax rates are generally below the top marginal tax rate reflecting the existence of a positive risk premium \(\Lambda_t \).\(^{29}\) The risk premium appears to be larger for the 15-year than the 2-year BETR, causing the 15-year BETR to be below the 2-year BETR which in turn is below the realized tax rate. The finding that the relative risk premium increases with the maturity of the yield spread is consistent with a large literature on the so-called “muni puzzle”, the observation that the slope of the municipal bond yield curve is almost always steeper than the slope of the Treasury yield curve. There is a large literature in finance that tries to explain this fact; see for example, Fama (1977), Poterba (1986), Green (1993), Park (1995), and Mankiw and Poterba (1996). So far, no single explanation of this puzzle has emerged, although some factors have been ruled out, such as default risk as well as systematic risk and duration risk; see Chalmers (1998, 2006). The main remaining explanations are taxes and liquidity. This paper shows that taxes can explain much of the variation of yield spread, at least at lower frequencies. Whether tax uncertainty or liquidity risk can account for the remaining difference – especially at high frequencies – is an interesting question for future research.

Figure 2 suggests that the simple model of the BETR given by equation (3) fits the data well. To provide further suggestive evidence on the identity of the marginal investor I turn to two additional data sources. Using the Federal Reserve’s Flow of Funds Accounts, Ang, Bhansali and Xing (2007) show the evolution of municipal debt ownership since 1950.\(^{30}\) Households’ ownership, either direct or indirect via mutual funds, increases starting in the 1970s. This change in ownership can partly be explained by the emergence of mutual funds which facilitate investment in municipal bonds considerably. The decline of bank ownership of municipal debt mirrors the rise in household ownership and is partly explained by legislative actions limiting the tax-exemption of municipal debt for corporations and by changes in regulations of bank charters in many states. The share held by insurance companies and other institutions, including foreign investors, is low and remains roughly constant. The changing pattern of municipal bond ownership might explain the conflicting evidence found in the earlier literature that tries to identify which marginal tax rate is implied in the municipal yield spread; see for example Fama (1977), Poterba (1986), Green (1993), and Park (1995). The important point for this paper is that the data from the Flow of Funds suggests that starting in the 1970s households are

\[^{29}\] Figure 8 shows the average break-even tax rate risk premium \(\mathbb{E}[\Lambda_t] \) as a function of the maturity \(m \).

\[^{30}\] Kueng (2012b) contains the corresponding figure from their analysis.
the marginal investors in municipal and Treasury bonds.

[Figure 3 about here.]

Next, one needs to know which households own municipal bonds in order to determine the marginal tax rate identified by the relative bond spread. Since equations (1) and (2) are first-order conditions of the marginal investor’s portfolio choice problem, they should apply to all households holding both types of bonds. To analyze this claim I map the SCF to the NBER TAXSIM calculator and impute effective marginal tax rates for each household.\footnote{See Feenberg and Coutts (1993).} I define the marginal tax rate of the marginal investor as the asset-weighted average of the effective marginal tax rate over all households that own both taxable and tax-exempt bonds. Figure 3 compares the estimates of the marginal investor’s marginal tax rate with the marginal tax rates of different percentiles of the income distribution taken from Saez (2004). The imputed tax rates in the SCF are very similar to the (risk-adjusted) short-run break-even tax rates derived from the municipal yield spreads. The marginal tax rate of the marginal investor identified in the SCF is close to the tax rate of the top 1\% and above the marginal tax rate of the top 5\% to 1\% of the income distribution.\footnote{Using data from federal income tax returns in 1988, Feenberg and Poterba (1991) find similar marginal tax rates for households that report receiving tax-exempt interest income.} Since the top two tax brackets move very closely during my sample period it is not important whether the marginal investor is in fact in the top bracket or one bracket below that. The identification of the consumption response to tax news shocks in the next section relies on changes in the path of expected tax rates, not the level. Therefore, choosing the wrong level of the marginal investor’s tax rate does not affect the results as long as this tax rate moves closely with the true tax rate.\footnote{The point estimates of the marginal investor’s marginal income tax rate are precise except for 1994. The larger standard errors in 1994 probably reflect the fact that the tax increase introduced in August 1993 was retroactive back to January 1, 1993 (OBRA 1993). Heterogeneity in portfolio re-balancing of marginal bond investors might explain these larger standard errors.}

In sum, the preceding analysis demonstrates that the position of the marginal investor in the income distribution remains stable during the sample period. Hence changes in break-even tax rates, holding fixed the risk premium, are due to changes in the effective tax rate of the marginal investor and not due to the marginal investor changing her position in the income distribution holding tax rates fixed.

2.4 Two Presidential Elections as Natural Experiments

The asset allocation data as well as the relative bond prices both strongly suggest that the marginal investor is a household in the upper tail of the income distribution.
However, these findings are only suggestive about the marginal investor’s identity without modeling the link between the portfolio allocation and equilibrium asset prices, which is beyond the scope of this paper. Instead, I use two natural experiments to formally test the hypothesis that the marginal investor is a household near the top of the income distribution. Furthermore, I assess the degree to which bond markets predict the evolution of future tax rates. The presidential elections of 1992 and 2000 are close to ideal natural experiments for this purpose. During both elections the nominees from the Democratic and the Republican Party campaigned on very different proposals concerning the top income tax rates. Furthermore, these tax proposals received extensive coverage by the media and featured prominently in both the primary and presidential debates. In 1992 Bill Clinton proposed to increase the top tax rate by 10% to deal with the high level of government debt. His victory ultimately lead to the Omnibus Budget Reconciliation Act (OBRA 1993), which increased the top rate by 8.6% retroactively back to January 1, 1993. Importantly, OBRA 1993 left the dividend and the long-term capital gains tax rates unchanged. President George H.W. Bush, haunted having broken his tax pledge from the 1988 election campaign, promised not to raise any taxes.

Similarly, during the presidential election of 2000 George W. Bush proposed to cut taxes across the board – including the top rate – by about 5%, using the budget surplus that accumulated under President Clinton. Incumbent Vice President Al Gore proposed tax breaks for low and middle income taxpayers while leaving the top rates unchanged.

Other studies that looked at the impact of elections on the bond markets include Slemrod and Greimel (1999) and Ayers, Cloyd and Robinson (2005). Slemrod and Greimel (1999) find that changes in the election probability of Steve Forbes in 1996, who proposed to introduce a flat tax, had an impact on the municipal yield spread of maturities 5 and 10 years but not for the 30-year maturity. Ayers et al. (2005) also use election probabilities from 1992 and find a positive response of the break-even tax rates using maturities 5, 10, and 30 years. Interestingly, they also find negative excess returns on dividend-yielding stocks in response to changes in the election probability of Bill Clinton. My results are an extension of their analysis. I use the entire term structure of BETRs and I offer a quantitative interpretation of the regression coefficients. Moreover, I extract the path of expected forward tax rates from the vector of regression coefficients.

For a comparison of the campaign proposals, see Seib and Murray (1992) and Calmes (2000).

OBRA 1993 also increased the top corporate tax rates, but only by 1% from 34% to 35%. George H.W. Bush proposed to cut long-term capital gains tax rates from 31% to 15.4%. Clinton on the other hand planned to leave the rates unchanged but offered to exclude 50% of long-term capital gains from taxation; see Seib and Murray (1992). Therefore, the presidential election of 1992 is useful to test the importance of the corporate tax rate against the income tax rate as a determinant of the municipal yield spread. However, the election of 1992 is not fully suited to discriminate between income taxes and taxes on long-term capital gains. Fortunately, the presidential election of 2000 allows me to discriminate between these two tax rates.

In a speech at the 1988 Republican National Convention as he accepted the nomination, George H.W. Bush used the (in)famous phrase “Read my lips: no new taxes”. In 1990 and under pressure from a Democratic congress he signed the Omnibus Budget Tax Reconciliation Act (OBRA 1990) which went into effect on January 1, 1991.

Specifically, Bush proposed to cut the top rate from 39.6% to 33%.
Bush’s victory in 2000 ultimately lead to the Economic Growth and Tax Relief Reconciliation Act of 2001 (EGTRRA) and the Jobs and Growth Tax Relief Reconciliation Act of 2003 (JGTRRA) which lowered the top income tax rate by 4.6% over three years. Importantly, EGTRRA 2001 leaves the top corporate income, capital gains, and dividend tax rates unchanged.\footnote{Later in his first term, President George W. Bush lowered the dividend tax rates and the long-term capital gains tax rates to 15%, 5%, and 0% (JGTRRA 2003). However, these cuts were not part of his campaign platform; see Calmes (2000). The presidential election of 2000 can therefore be used to test the impact of the top income tax rate on the municipal yield spreads against all other marginal tax rates.}

In this exercise I use data from the Iowa Electronic Markets (IEM), a political prediction market described in more detail in Kueng (2012b). The IEM provides the daily price of a winner-takes-all contract during the last few month of the presidential races of 1992 and 2000. Those contracts pay $1 if the specific candidate wins and $0 otherwise. Since bets are limited to $500, market participants cannot use the prediction markets to hedge their income tax risk. Changes in the prices of such contracts can be interpreted as measuring daily changes in the election probability of the presidential candidates.\footnote{See Snowberg, Wolfers and Zitzewitz (2011) for a more extensive discussion of the use of prediction markets for economic inference.}

In the following derivation of the regression equations I use the presidential election of 2000, but the same applies for the election of 1992 substituting “Clinton” for “Bush” and “Bush” for “Gore”.

Let p_t be the price of a contract that pays $1 if George W. Bush wins the election in 2000 and 0 otherwise. $\Pr_t(Bush)$ denotes the probability of Bush winning the election conditional on all information available at time t. I assume that the price corresponds to the rational conditional probability measure, i.e.

$$p_t = \Pr_t(Bush).$$

Using the law of iterated expectations, I decompose the conditional expectation of the path of future tax rates $E_t\tau$ as follows,

$$E_t\tau = p_t \cdot (E_t[\tau|Bush] - E_t[\tau|Gore]) + E_t[\tau|Gore]. \quad (5)$$

Substituting (5) in (4) I obtain a system of 30 regression equations

$$\theta_t = p_t \cdot W_t(E_t[\tau|Bush] - E_t[\tau|Gore]) + (W_tE_t[\tau|Gore] - \Lambda_t)$$

$$= p_t \cdot \beta + (\alpha + Z_t \Gamma + \varepsilon_t), \quad (6)$$
where α are maturity fixed effects and Z_t is a list of variables that capture risk premium shocks Λ_t. Model (4) delivers the interpretation of the population parameters to be estimated,

$$
\beta = E[W_t] \left(E_t[\tau|Bush] - E_t[\tau|Gore] \right).
$$

(7)

$E[\cdot]$ without a subscript is defined as the average of the conditional expectations over the election sample, i.e. $E[x] \equiv \frac{1}{T} \sum_{t=1}^{T} E_t[x]$. Equation (7) shows that the vector of population regressions β contains the annuity values of the difference in the paths of expected tax rates ($E_t[\tau|Bush] - E_t[\tau|Gore]$) between a world in which Bush wins the election in 2000 and the counter-factual world in which Gore wins. Table 2 lists the estimated response $\hat{\beta}$ of the BETRs to changes in the election probability in 2000 and 1992 for the eight most commonly traded maturities. Most coefficients are statistically significantly different from zero and have the expected sign.

[Figure 4 and Figure 5 about here.]

To interpret the magnitudes of the estimated coefficients, note that the contracts pay 100 cents if the candidate wins and zero otherwise. Therefore, an increase of the price by 1 cent corresponds to a 1% increase in the perceived probability of the candidate winning the presidential election. Multiplying the coefficients by 100 yields the predicted change in the BETRs if George W. Bush (Clinton) wins the election in 2000 (1992) relative to the counter-factual that Gore (George H.W. Bush) wins. Figure 4 and Figure 5 plot the vector of all 30 regression coefficients, all multiplied by a hundred. Letting $\tau_{t}^{pf} = (\tau_{t,1} \ldots \tau_{t,M})'$ denote the perfect-foresight path of realized tax rates at date t over the horizon of 1 to $M = 30$ years, I calculate the hypothetical regression coefficients one should obtain under perfect foresight,

$$
\beta^{pf} = E[W_t](\tau_{t}^{pf} - \tau_t).
$$

Here I assume that the level of the unobserved counter-factual tax path $- E_t[\tau|Gore]$ in 2000 and $E_t[\tau|H.Bush]$ in 1992 which is not identified by the regression – is the status quo tax rate during the election year, i.e. $\tau_t = 39\%$ in 2000 and $\tau_t = 31\%$ in 1992, respectively.

41 I include in this list among other variables the yield spread between off- and on-the-run Treasuries, between corporate and Treasury bonds, between Aa and pre-refunded municipal bonds, the credit spread between Baa and Aa municipal bonds, the 30-day visible municipal bond supply, and the trading volume in the prediction market. In Kueng (2012b) I provide the full set of regression results for the eight most commonly traded maturities.

42 I searched the archives of The New York Times and The Wall Street Journal for articles that would indicate a change in the tax proposal of the candidates during the sample period but did not find any. Hence I assume that the relative difference between the tax proposals $(E_t[\tau|Bush] - E_t[\tau|Gore])$ remains constant during the final months of the election, i.e. $E_t[\tau|Bush] - E_t[\tau|Gore] = E[\tau|Bush] - E[\tau|Gore]$ for all t. Otherwise, β identifies the average value of the relative difference between the two proposals during the final months of the presidential election, i.e. $\beta = E[W_t(E_t[\tau|Bush] - E_t[\tau|Gore])]$.

I show two scenarios for the tax path of future tax rates beyond 2011, one in which the Bush tax cuts expire in 2011 as scheduled and one in which they become permanent.

Figure 4 and Figure 5 show the path of expected break-even tax rate changes \(\hat{\beta} \) together with the change in the break-even tax rates under perfect foresight \(\beta^{pf} \). Note that the regression does not impose any restrictions on the sign, size, or the shape of the estimated path. While the estimates are somewhat less precise for short maturities, the coefficients for the entire term structure of BETRs show a strong relationship between the estimated path of expected BETR changes and the perfect-foresight change in the BETRs. I conclude that the municipal yield spread is strongly driven by expected future top income tax rates.

2.5 Deriving Expected Tax Rates from Break-Even Tax Rates

I am ultimately interested in the inverse mapping of equations (4) and (7), i.e. \(E_t \tau \) as a function of \(\theta_t \) and \(E[\tau|Bush] - E[\tau|Gore] \) as a function of \(\beta \). These market-based expected tax rates can be interpreted as forward tax rates in analogy to forward interest rates derived from the term structure of Treasury yields. Recall that \(W_t \) is a lower triangular annuity matrix with its last column vector given by \((0 \ldots 0 \, w_{t,M}^{(M)})'\). In the data, \(w_{t,M}^{(M)} \) has a mean of 0.01 with a standard deviation of 0.003 and a minimum of 0.003, so \(W_t \) can be close to singular. Inverting this matrix makes the solution sensitive to small perturbations of \(\beta \) or \(\theta_t \) that are unrelated to tax news. Instead of a direct inverse I use a robust inverse of \(W_t \), know as a first-order ridge regression in the statistics literature.\(^{43}\) I impose that the expected tax path is a smooth function across maturities \(m = 1, \ldots, 30 \), since it is implausible that the expected tax rate e.g. in 20 years is very different from the expected tax rate in 19 or 21 years. The robust inverse penalizes such non-smooth solutions with a factor \(\mu \), called the regularization parameter. In Kueng (2012b) I show that the parameter \(\mu \) only significantly affects long-run expectations and discuss how to optimally choose \(\mu \).

[Figure 6 and Figure 7 about here.]

Figure 6 shows the path of expected tax rates during the presidential election of 2000 obtained by inverting the regression coefficients \(\hat{\beta} \). The top tax rate is expected to decrease to 35% by the year 2002 and to return quickly back to the initial level of 39.6%. Moreover, the bond markets expect the initial tax cuts to be off-set by later tax increases

\(^{43}\) The word *regression* can be misleading in this context since I do not perform statistical inference in the traditional sense of projecting a vector from a larger onto a smaller space. Instead, the first-order ridge “regression” calculates \(M \) forward tax rates \(E_t \tau \) from \(M \) observed break-even tax rates \(\theta_t \). The constraint on the first-derivative of the solution is matched by the additional regularization penalty parameter \(\mu \). See Kueng (2012b) for more details.
above the initial level of 39.6%. One interpretation is that the bond markets expect the
tax cuts to be unsustainable. Compared to the perfect-foresight tax path, the path of
the expected tax rates returns quickly back to rates around 40%. The expected tax rate
starts to increase sharply after four years. One interpretation of this behavior is that the
bond markets expect President George W. Bush to serve for only one term. Turning to
the presidential election of 1992, Figure 7 graphs the path of expected tax rates against
the perfect-foresight path. The bond markets correctly anticipate the new level of the
top tax rate induced by the Clinton tax increase in 1993. The path of expected tax rates
slightly underestimates the duration of the Clinton tax increase. The path also shows
that the bond markets in 1992 expect the long-run tax rates to return back to the initial
level. However, the tax cuts enacted under President W. Bush “only” lowered the top
rate to 35% instead of 31%, the level in 1992, or 33%, George W. Bush’s initial campaign
proposal.

It is remarkable that the results from both elections suggest that both tax reforms
were expected to be temporary. In both cases, the long run tax rates eventually return
back to the initial levels of the election year.\footnote{More precisely, in the long run the
tax rates return back to the unobserved counter-factual expected
tax path $E[\tau|\text{Gore}]$ respectively $E[\tau|\text{H.Bush}]$ which might be different than the top tax rate in the election
year.} In the next section I have to make an
assumption about the perfect-foresight path of tax rates beyond 2011. Consistent with
the regression results from the presidential election of 2000 I assume that from 2011 on
the expected tax rate reverts back to the Clinton level.

The two natural experiments show that the model of the BETRs given by equation (4)
is an accurate description of the relative municipal yield spread. They also show that the
expected tax rates that underlie the BETRs forecast future top tax rates surprisingly well.
The experiments highlight the necessity of imposing some restrictions on the solution to
the inverse problem in order to obtain a smooth and hence reasonable path of expected
forward tax rates.

\begin{figure}
\centering
\caption{The path of expected tax rates against the perfect-foresight path.}
\end{figure}

Unfortunately, the additional source of variation provided by the election probabilities
is not available for the entire sample period. Instead, I impose two identifying assumptions
to recover $E_t \tau$ from θ_t during the sample period from 1977 to 2001. The first assumption
requires that the bond spreads reflect rational-expectations,

\begin{equation}
E[W_t (E_t \tau - \tau^{\text{pf}}_t)] = 0.
\end{equation}

\begin{figure}
\centering
\caption{BETR forecast error}
\end{figure}
Equation (8) requires that the BETR forecast error is unbiased. The time series of the BETRs (Figure 2), the Flow of Funds, the SCF (Figure 3), and especially the two natural experiments (Figures 4, 5, 6, and 7) all show that the marginal tax rate of the top 1% of the income distribution is the tax parameter that determines the municipal yield spreads (in the absence of any shocks to the relative risk premium). Rearranging (4) and imposing (8) yields a measure of the average risk premium

\[\mathbb{E}[\Lambda_t] = \mathbb{E}[W_t \tau_{t}^{pf} - \theta_t]. \]

Figure 8 shows the average risk premium as a function of the maturity \(m \), estimated globally over the entire sample from 1977 to 2001. Consistent with the muni puzzle, the average risk premium is monotonically increasing in the maturity of the BETR.

The second identification assumption deals with temporary shocks to the risk premium. Adding \(\mathbb{E}[\Lambda_t] \) to \(\theta_t \) only adjusts the level of the BETR series but does not deal with shocks to the risk premium. I assume that households and the marginal investors form tax expectations independently of the municipal yield spread. For instance, households read newspapers or follow political campaigns and use all these sources of information to form expectations about future tax rates. The econometrician does not directly observe those news sources, but can infer the aggregate information set by looking at municipal yield spreads and interpret the data through the lens of the BETR model, equation (4). For instance, suppose the break-even tax rates decrease at date \(t \) but immediately rebound the next day, at \(t + 1 \). The econometrician can use this fact to estimate the tax expectations at date \(t \). He will conclude that this change in break-even tax rates was most likely due to a liquidity shock instead of tax news. If he uses only past and current prices he will underestimate the rational information set. This way of modeling tax news implies that the econometrician wants to use all prices – past, current, and future – to infer the path of expected tax rates \(\mathbb{E}_t \tau \) at any point in time.

Filtering the tax news shocks from the “noise” shocks – i.e. the risk premium shocks – is important since the tax news shocks form the regressor in the consumption analysis in Section 3. Liquidity shocks introduce noise and therefore potentially attenuation bias.

\[\text{Footnote 45: The tax shocks are still identified even if the tax rate of the marginal investor is not exactly the tax rate of the top 1% but say of the top 3%. There are two reasons for this robustness. First, the top tax rates move more or less one-for-one over the sample period 1980-2001. Second, I will use changes in the expected tax rates to estimate the response of household consumption to tax news. Hence, any misspecification of the level will be differenced out.} \]

\[\text{Footnote 46: Ignoring the average risk premium would lead one to falsely infer a much lower marginal tax rate than the top income tax rate.} \]

\[\text{Footnote 47: I do not assume that all rich households in the CEX are marginal municipal bond investors. Instead, the marginal investors are a subset of all rich households.} \]
of the consumption response coefficient. This attenuation bias toward zero would lead to the conclusion that households do not respond to news even if they in fact behave according to the rational-expectations life-cycle model. To obtain a more precise measure of the expected tax rates I use a two-sided low-pass filter that passes all frequencies below two years. While the filter may remove some tax news shocks in addition to liquidity shocks, it reduces potential attenuation bias in the analysis of household consumption. The two-year low pass filter is motivated by the fact that two years is the shortest period between two income tax reforms in the sample (OBRA 1990 and OBRA 1993). I denote the low-frequency component of the BETR by \(\tilde{\theta}_t \); Figure 2 shows \(\theta_t \) and \(\tilde{\theta}_t \) for 2- and 15-year maturities.

With these two identification assumptions – that there is no systematic forecast error, and that the expected tax rates affect the trend component of the BETR series while high-frequency fluctuations reflect noise – I recover the underlying path of expected future tax rates \(E_t \tau \) using a first-order ridge regression; for more details see Kueng (2012b).

48 I checked my results using other frequency cut-offs but did not find any tangible effects on the results. The two year cut-off is conservative since it probably filters out some tax news shocks. This loss of information lowers the precision of the consumption response estimates. On the other hand, this cut-off value lowers the level of noise in the tax news shocks. The reduction of the noise reduces the potential attenuation bias in the consumption response coefficients. Therefore, the choice of the frequency cut-off reflects a trade-off between bias and efficiency of the estimates. Note that noise biases the consumption response towards zero and hence against finding an effect of tax news shock on household consumption.

49 A different approach of modeling tax news assumes that households try to infer the path of expected tax rates \(E_t \tau \) from municipal yield spreads \(\theta_t \). This approach implies that the households and the econometrician solve the same signal extraction problem at each point in time. Therefore, the econometrician can only use current and past bond prices to infer the households’ information sets. The difference between the two ways of modeling information can be seen from the way the econometrician solves the signal extraction problem of equation (4). The first view implies that the optimal solution is a two-sided filter while the second view requires the use of a one-sided filter. In Kueng (2012b) I estimate the consumption response to tax news shocks under this alternative way of modeling news using a one-sided filter and show that the results are robust to this alternative view. Moreover, the additional specifications show that, as one would expect, the attenuation bias increases with the degree of noise, causing the response using the one-sided filter to be lower than the response using the two-sided filter, and in turn biasing the response using no filter all the way to zero.

50 Finally, before I combine the tax shock with the household consumption data I normalize the level of the expected tax rate such that the one-year expected tax \(E_t \tau_1 \) rate is zero. By using this normalization I assume that permanent tax shocks which move all BETRs in the same direction by the same amount have to be anticipated at least one year in advance. Fundamental tax reforms such as TRA 1986 for example are usually discussed years in advance before they pass Congress. Hence, if an unanticipated permanent shock to all BETRs occurs, then I assume that it is related to changes in the liquidity premium. The purpose of this normalization is to further reduce measurement error and potential attenuation bias towards zero in the consumption response coefficients. All the identifying variation then comes from changes in the BETRs relative to each other, that is from the cross-section (i.e. the term structure) of municipal yield spreads.
Figure 9 shows the path of expected tax rates $E_t \tau$ at the beginning of each year against the perfect-foresight tax path τ^p_f for each month of January from 1977 to 1982. While Figure 2 already suggests that the Reagan tax cuts were well anticipated, this is only a conjecture since the time series shown in Figure 2 are break-even tax rates θ_t and not forward tax rates $E_t \tau$. The path of expected forward tax rates in Figure 9 obtained by inverting the break-even tax rates of all available maturities confirms this conjecture. The sequence shows that taxes are expected to remain high during Jimmy Carter’s presidency and to even increase over the foreseeable future. The long-run expectations decreased sharply during the presidential election of 1980 as it became increasingly clear that Ronald Reagan would become the next president. Between 1980 and 1982 as Reagan passed his first tax cut – the Economic Recovery Tax Act (ERTA 1981) – the bond market also started to anticipate the second tax reform, the Tax Reform Act of 1986 (TRA 1986). This figure reveals an astonishing degree of fiscal foresight contained in the municipal yield spreads. In the next section I use changes in the paths of expected tax rates to estimate the household consumption response to tax news.

The time series of market-based expectations derived in this section shows that fiscal foresight can be considerable. Moreover, the path of expected tax rates $E_t \tau$ derived from municipal yield spreads does a good job of recovering the underlying rational tax expectations. While the wealthy households that invest in municipal bonds have a high degree of fiscal foresight, their expectations may not be representative of consumers as a whole. In the next section I quantify the degree of fiscal foresight of households by estimating the response of household consumption to tax news in order to learn more about consumer behavior and the transmission of tax news shocks in the real economy.

3 Household Consumption Response to Tax News

I use the basic framework of the rational-expectations life-cycle model to estimate the response of household consumption C to tax news and to quantify the degree of fiscal

51 The forecast horizon for this period is 15 years because Treasury yields are not available at longer maturities before 1983.

52 The web appendix of this paper (https://sites.google.com/site/lorenzkueng/) contains a video of the evolution of $E_t [\tau]$ from January 1977 to August 1982 that shows monthly changes in the path of expected tax rates over a 15-year forecasting horizon.

53 The initial increase in expected tax rates reflects proposals during the late 1970s by President Carter to raise top income tax rates; see Poterba (1986). The increase is also consistent with expected bracket creep due to rampant inflation during this time and that the tax brackets were not yet indexed to inflation. Since the marginal tax rate of the marginal investor was well below the top statutory rate, expected increases in nominal income would push high-income investors in higher brackets; see Figure 3.
The empirical analysis uses household-level micro data from the Consumer Expenditure Survey (CEX), described in more detail in Kueng (2012b). The model is basic in the following sense: The economy is frictionless and household income before taxes Y is exogenous. Households can freely borrow and lend at the tax- and risk-free interest rate. There are no frictions to adjust consumption from one to the next quarter. Using a first-order approximation to the household’s first-order condition, the Euler equation is given by

$$\mathbb{E}_t \Delta_t \log(C_{i,t+1}) \approx \frac{1}{\gamma} \log(\delta/\mathbb{E}_t D_{t+1}) .$$

γ is the coefficient of relative risk aversion and δ is the household’s discount factor in the steady state. Households have identical preferences and hence identical stochastic discount factors holding fixed the life-cycle income profile. However, the empirical specification will allow for household-specific shocks to the family composition which can be interpreted as preference shocks. Moreover, I allow for predictable consumption changes as a function of the age of the head of the household and other family characteristics. To map the model to the data I assume that $\delta \mathbb{E}_t D_{t+1} \approx 1.$

This approximation together with the certainty equivalence due to the first-order approximation of the Euler equation results in similar predictions as the standard permanent income hypothesis.

54 Consumption is not the only margin of adjustment to changes in expected tax rates one might want to study. Other applications of interest include labor supply, taxable income, charitable giving, or the choice between defined contribution and defined benefit pension plans.

55 This abstracts from the effect of marginal tax rates on consumption via intertemporal substitution through their effect on the effective after-tax interest rate. There are two main justifications for neglecting this effect. First, the consumption model derived in this section applies to the consumption of nondurable goods, services and the service flow of durable goods, but not directly to durables expenditures. Moreover, theory suggests that durables should be the component of total expenditures that is most affected by the interest rate. Second, empirical evidence suggests that the effect of the interest rate (and hence the marginal tax rate) on the saving rate is small. Blinder and Deaton (1985), p.468, note that “standard consumption functions often omit the rate of interest as an argument – not on theoretical grounds, but on empirical grounds.” See also the detailed discussion in Deaton (1992). Nevertheless, an interesting avenue of future research is to use changes in expected marginal tax rates to estimate the elasticity of intertemporal substitution at the household-level.

56 A second-order approximation of the first-order condition (or an exact solution if consumption is log-normal) adds the second moment of log-consumption $\frac{1}{2} \mathbb{V}_t(\Delta_t \log(C_{i,t+1}))$ to the Euler equation. I abstract from this term in order to obtain a closed form solution of consumption as a function of expected after-tax lifetime income. This simplification comes at the cost of ignoring the effect of tax uncertainty on household consumption.

57 This approximation together with the certainty equivalence due to the first-order approximation of the Euler equation results in similar predictions as the standard permanent income hypothesis.
a closed form solution for the current level of consumption,

\[C_{it} = \sum_{s=0}^{H} \frac{w_{i,s}^{(H)}}{\sum_{q=0}^{H} \mathbb{E}_t D_q} (\mathbb{E}_t Y_{is} - \mathbb{E}_t T_{is}) , \]

where \(w_{i,s}^{(H)} \) is again the annuity weight on after-tax income \(Y_{is} - T_{is} \) and \(T_{is} \) is household \(i \)'s tax liability in \(s \) years. Current consumption equals the annuity value of current and expected future after-tax income. The change in household consumption due to new information arriving in period \(t + 1 \) is

\[\Delta_t \mathbb{E}_{t+1} C_{i,t+1} = \sum_{s=0}^{H} \left[w_{i,s}^{(H)} \Delta_t \mathbb{E}_{t+1} (Y_{is} - T_{is}) + \Delta_t w_{i,s}^{(H)} \mathbb{E}_{t+1} (Y_{is} - T_{is}) \right] , \]

where \((\mathbb{E}_{t+1} - \mathbb{E}_t)[x_{i,s}] \equiv \Delta_t \mathbb{E}_{t+1} x_{i,s} \).

Household \(i \)'s tax liability in \(h \) years, \(T_{i,t+h} \), is a function of future income \(Y_{i,t+h} \) and the future tax schedule \(\{ \tau_{t+h}(b), B_{t+h}(b) \}_{b=1}^{B} \), where \(\tau_{t+h}(b) \) is the tax rate in bracket \(b \) and \(B_{t+h}(b) = y_{t+h}(b) - y_{t+h}(b - 1) \) is the size of the income bracket \(b \) at future date \(t+h \), with bracket thresholds \(y(b) \) and \(y(0) = 0 \). The marginal tax rate of the top income bracket identified by the municipal yield spreads is \(\tau_{t+h}(B) \equiv \tau_{t+h} \). Define the marginal income bracket of household \(i \) as \(b_{i,t+h} = \{ b : y_{i,t+h}(b) \leq Y_{i,t+h} < y_{i,t+h}(b + 1) \} \), its marginal tax rate as \(\tau_{i,t+h} = \tau_{t+h}(b_{i,t+h}) \) and its marginal tax bracket as \(B_{i,t+h}(b_{i,t+h}) = Y_{i,t+h} - y_{i,t+h}(b_{i,t+h}) \). The tax liability of household \(i \) at date \(t+h \) is \(T_{i,t+h} = \sum_{b \leq b_{i,t+h}} B_{i,t+h}(b) \tau_{i,t+h}(b) \).

Taking a first-order approximation of \(T_i \) around current expectations \((\mathbb{E}_t Y_i, \{ \mathbb{E}_t B(b), \mathbb{E}_t \tau(b) \}) \) and evaluating it at next period’s expectations yields \(^{58}\)

\[\Delta_t \mathbb{E}_{t+1} T_i \approx \Delta_t \mathbb{E}_{t+1} T_1 \cdot \mathbb{E}_t \tau_i + \sum_{b \leq b_i} [\mathbb{E}_t B(b) \cdot \Delta_t \mathbb{E}_{t+1} \tau(b) + \Delta_t \mathbb{E}_{t+1} B(b) \cdot \mathbb{E}_t \tau(b)] . \]

In an ideal setting I would observe news shocks for each tax rate \(\tau_{t+h}(b) \) in each lower bracket \(b < B \), i.e. \(\Delta_t \mathbb{E}_{t+1} \tau_{t+h}(b) \), as well as news about changes in the tax brackets \(\Delta_t \mathbb{E}_{t+1} B_{t+h}(b) \) \(\forall b \). However, in practice I only observe news shocks for the top tax rate \(\tau_{t+h}(B) \). Therefore, I replace the unobserved news terms using two assumptions. First, I assume that changes in the tax base – if they do occur – are perfectly foreseen, so that \(\mathbb{E}_t B_{t+h}(b) = B_{t+h}(b) \). With the exception of TRA 1986, which is discussed in more detail in Kueng (2012b), this assumption is reasonable for the income tax reforms in my sample since the brackets did not change much. Second, I scale the perfect-foresight tax rate

\(^{58}\) I drop the time index for simplicity; see Kueng (2012b) for the derivation of this approximation.
in each lower income bracket – $\tau_{t+h}(b)$ with $b < B$ – by the ratio of the market-based expected top tax rate $\mathbb{E}_t \tau_{t+h}(B)$ to the perfect-foresight top tax rate $\tau_{t+h}(B)$, which is taken from Saez (2004), such that:

$$\mathbb{E}_t \tau_{t+h}(b) = \tau_{t+h}(b) \frac{\mathbb{E}_t \tau_{t+h}(B)}{\tau_{t+h}(B)}. \tag{10}$$

It is important to note that this assumption does not imply that the expected change in the average tax rate is the same for all households. To see this, suppose that the expected future tax schedule in h years from now has only two tax rates, 10% and 50%. Let the first tax bracket range from 0 to $10,000$ so that all income above $10,000$, which is the second income bracket, is expected to be taxed at the 50% rate. Suppose that the expected top tax rate increases by 10%, i.e. $\Delta \tau_{t+1} \mathbb{E}_{t+1} \tau_{t+1+h}(B) = 0.1$ such that the lower tax rate increases by 1 percentage point from 10% to 11% and the top tax rate by 5 percentage points from 50% to 55%. The expected average tax rate of a household with an income of $Y_{i,t+h} = 10,000$ increases by 1 percentage point. However, the expected average tax rate of a household with an income of $Y_{i,t+h} = 15,000$ increases by $2\frac{1}{3}$ percentage points. Moreover, as income goes to infinity the expected change of the average tax rate approaches 5 percentage points, which equals the expected change of the top tax rate. The assumption in equation (10) is therefore least restrictive for high-income households for which changes in the top tax rate are closely related to changes in their average tax rate. For this reason I start the consumption analysis by estimating the consumption response of high-income households to tax news.

To make the estimated responses to tax news comparable with results in other studies I estimate the response of consumption to tax news shocks in growth rates rather than in first differences. To avoid a possible division bias of the tax news response coefficient I normalize consumption changes and after-tax income changes using two different variables. Avoiding this type of bias is important since division bias increases the probability of finding a response to tax news even if there is no response in the economy. I normalize changes in tax liabilities and income by the estimated household income in period $t+h$, which is based on the predetermined income from the first interview – interview 2 in CEX terminology – and described in more detail below. Using income from the first instead of the last interview avoids any endogeneity bias due to the fact that income from the last

59 Since the sampling frequency is quarterly at the household-level while expectations are formed at annual frequency I assume without loss of generality that the perfect-foresight variables do not change between quarters, e.g. $\tau_s(b)$ and $y_s(b)$ are the same for all four quarters in which I observe household i. Therefore, $\Delta \tau_{t+1} \mathbb{E}_{t+1} \tau_{t+1+h}(b) = \tau_{t+h}(b) \frac{\Delta \mathbb{E}_{t+1} \tau_{t+1+h}(B)}{\tau_{t+h}(B)}$.

60 An alternative approach that yields similar predictions for the growth rate of consumption is to log-linearize the household’s budget constraint.
interview might contain new information that the household received during the survey year. I normalize consumption changes by consumption instead of income. To reduce measurement error I use average consumption \(\bar{C}_i \) over all four interviews.\(^{61}\)

I calculate perfect-foresight average tax rates \(\bar{\tau}_{is} \) that depend on the head of household’s age and the household’s income percentile. These profiles allow for predictable changes in average tax rates due to the hump shape of the life-cycle income profile. Lagged income and household age are good predictors of future household income.\(^{62}\) Lagged income summarizes observed household characteristics such as education and experience as well as unobserved heterogeneity such as work effort. Household age has predictive power for future income even conditional on work experience. I estimate future average tax rates non-parametrically; in particular, I discretize the joint distribution of age and income and assume that the household remains in the same age-specific income percentile throughout its life-cycle.\(^{63}\) Having only two dimensions guarantees that there is a sufficient number of households in each age-income cell in each year, i.e. at least 20. I restrict the sample to households where the head’s age is between 25 and 64 years and the head is not a student – a sample selection that is common in most studies that use the CEX; see for example, Souleles (1999), and Johnson et al. (2006).\(^{64}\) I use households age 65 to 75 to estimate counter-factual retirement income after age 65.\(^{65}\) I assume that households expect to receive this level of retirement income for the rest of the planning period.\(^{66}\) Finally, I set

\(^{61}\) The CEX measures expenditures more precisely than income. Since my purpose here is only to normalize consumption changes I can use an average over all survey responses without violating the flow of information received by households. The consumption response is purely driven by the quarterly changes and all those changes are normalized by the same quantity \(\bar{C}_i \). This averaging further reduces measurement error. At the earliest, the actual tax shock can occur one quarter after the household exits the survey because households are in the survey for at most one year. I checked my results using both lagged consumption and consumption from the first interview to normalize consumption changes and I also estimated the model using log-changes in consumption. The estimates are quantitatively similar but have somewhat larger standard errors.

\(^{62}\) I confirm this conjecture in independent work. I extend the income imputation model of the BLS for the CEX, which started in 2004, back to 1980. Lagged income as well as household age are the best predictors of future levels of household income. Other studies also found that household income dynamics are well approximated by a random walk after controlling for the age profile of income, e.g. MacCurdy (1982), Abowd and Card (1989), and Meghir and Pistaferri (2004).

\(^{63}\) More precisely, I use the following income percentile thresholds: 10, 20, \ldots, 50, 55, \ldots, 95. I use a finer grid for higher incomes to better account for the increasing income inequality during the sample period. I use age bins with a 10-year range to make sure that the number of observations in each cell is at least 20. The five age bins – age 25-34, 35-44, 45-54, 55-64, 65-75 – approximate the income life-cycle profiles well.

\(^{64}\) See Kueng (2012b) for a more detailed description of the household sample selection.

\(^{65}\) I use the tax code of 2004 to compute perfect-foresight average tax rates for years 2005 to 2011 after which I assume that the Bush tax cuts expire. This assumption is supported by the bond markets’ expectations during the presidential election of 2000. I use the tax code of 2000 – the last year under Clinton – to calculate perfect-foresight average tax rates beyond the year 2011.

\(^{66}\) I limit the estimation of the retirement period to households age 65 to 75 due to the fact that the quality of the survey answers tends to be poorer for old retirees.
the planning horizon H equal to the maximum available bond maturity M, either 15, 20, or 30 years depending on the sample period.

Using these assumptions and the approximation $\Delta_t w^{(M)}_{t+1,s} \approx 0$, the response of quarterly household consumption growth to new information arriving in period $t + 1$ is

$$
\frac{\Delta_t E_{t+1} C_{i,t+1}}{C_i} = \sum_{s=1}^{M} w^{(M)}_{t,s} \frac{\bar{\tau}_{is}}{\tau_s} \Delta_t E_{t+1} \tau_s + \sum_{s=0}^{M} w^{(M)}_{t,s} \left(1 - E_t \tau_{is} \right) \frac{\Delta_t E_{t+1} Y_{is}}{Y_{is}}, \quad (11)
$$

where household i's future average tax rate in s years is $\bar{\tau}_{is} = \frac{\tau_{is}}{Y_{is}}$. The first term on the right hand side is the household-specific tax news shock, while the second term is the structural error term. Given the assumption in equation (10), the change in the unobserved expected average tax rate is related to observables as $\Delta_t E_{t+1} \bar{\tau}_{t+h} = \frac{\tau_{t+h}}{\tau_{t+1}} \Delta_t E_{t+1} \tau_{t+h}$. The expected change in the top tax rate $\Delta_t E_{t+1} \tau_{t+h}$, which is identified using the municipal yield spreads, can now be interpreted as the signal that the household receives between date t and $t + 1$. The term $\frac{\tau_{is}}{\tau_s}$ is a measure of the relevance of the signal for the household’s consumption decision. One can think of this ratio as an importance weight for the signal: if this ratio is low then the impact of news about the top tax rate in s years has only a small impact on the household’s expected after-tax lifetime income, and a rational household should therefore largely ignore the signal $\Delta_t E_{t+1} \tau_s$. On the other hand if the ratio is large, then the household should pay close attention to the signal.

The realized consumption change is the sum of the response to news and the predictable growth component of consumption given information at time t, $\Delta_t C_{i,t+1}/C_i \equiv \Delta_t E_{t+1} C_{i,t+1}/\bar{C}_i + E_t \Delta_t C_{i,t+1}/\bar{C}_i$. Consistent with previous studies I model the predictable component of consumption as a linear function of household characteristics z and monthly fixed effects α, $\phi_z C_{i,t+1}/C_i = \alpha_{t+1} + \phi_z^* \Delta_t z_{i,t+1} + \epsilon^{ME}_{i,t+1}$. $\Delta_t z_{i,t+1}$ contains changes in the family composition and a second-order polynomial in household age, α_{t+1} are monthly fixed effects, and $\epsilon^{ME}_{i,t+1}$ captures measurement error.

67 To see that $\Delta_t w^{(M)}_{t+1,s} \approx 0$, note that the slope of the term structure is usually positive, hence in general $\bar{\tau}_{is} \leq \frac{\tau_{is}}{\tau_s} \leq \bar{\tau}_{is}$, The bounding statistic $\frac{1}{2} \sum_t \Delta_t \left(\frac{E_{t+1} D_i}{\sum_{s=1}^{M} E_{t+1} D_i} \right)$ has a sample mean of $-9.48 \cdot 10^{-6}$ with a standard deviation of 0.00376. Hence $\Delta_t w^{(H)}_{t+1,s}$ is of order $1/10,000$.

68 The first element in the first sum drops out since the current tax schedule is known, hence $E_{t+1} \tau_{0}(b) = E_t \tau_0(b) \forall b$. Therefore, the first sum starts at $s = 1$. The same is not true for household income because in general $E_{t+1} Y_{i0} \neq E_t Y_{i0}$, where Y_{i0} is household i's current income during the interview year.

69 Introducing household-level fixed effects would violate the model’s information structure and potentially bias the results; see Runkle (1997).
Combining (11) and (12) yields the following regression,

\[
\Delta_t C_{i,t+1} - C_i = \alpha_{t+1} + \beta \left(\sum_{s=1}^{M} w_{t+1,s} \frac{\bar{\tau}_s}{\tau_s} \Delta_t \bar{E}_{t+1} \tau_s \right) + \phi_t' \Delta_t \bar{z}_{i,t+1} + \varepsilon_{i,t+1},
\]

(13)

with the combined error term \(\varepsilon_{i,t+1} = \varepsilon_{i,t+1}^S + \varepsilon_{i,t+1}^{ME} \), where the structural error term is \(\varepsilon_{i,t+1}^S = \sum_{s=0}^{M} w_{t,s} (1 - \bar{E}_t \tau_{is}) \Delta_t \bar{z}_{i,t+1} \). The tax news response \(\beta \) is identified if news about future tax changes are uncorrelated with news about before-tax household income \(\varepsilon_{i,t+1}^S \), conditional on household characteristics \(\Delta_t \bar{z}_{i,t+1} \) and monthly fixed effects \(\alpha_{t+1} \), i.e.

\[
\text{Cov} \left(\sum_{s=1}^{M} w_{t+1,s} \frac{\bar{\tau}_s}{\tau_s} \Delta_t \bar{E}_{t+1} \tau_s , \varepsilon_{i,t+1} | \Delta_t \bar{z}_{i,t+1}, \alpha_{t+1} \right) = 0.
\]

(14)

Monthly fixed effects control for changes in the average interest rate, and they also control for the extent to which fiscal policy is used to counteract aggregate fluctuations in economic activity. While fiscal policy was extensively used prior to the 1980s, it was largely replaced by monetary policy as the main countercyclical policy tool since then, at least until very recently. For instance, Romer and Romer (2010) find that all income tax changes between 1980 and 2003 – with one minor exception in 2001 – are not countercyclical nor did they coincide with changes in government spending.70 Romer and Romer therefore classify those income tax reforms as exogenous, driven either by attempts to increase long-run economic growth (ERTA 1981, TRA 1986, EGTRRA 2001 and JGTRRA 2003) or by concerns about the federal budget deficit (OBRA 1990 and OBRA 1993).

While the tax reforms in the sample are orthogonal to the current state of the economy – and hence exogenous according to the terminology of Romer and Romer (2010) –, the corresponding tax news shocks might nevertheless be correlated with news about future income. Thus, while it is not possible to fully rule out that the consumption response is at least partially driven by correlated income news shocks, a consumption response to either type of shock still indicates that households are forward-looking.

One final concern is that liquidity shocks are correlated with the business cycle or with bad income news in general. When financial markets are under stress – such as during the financial crisis of 2008-2010 – the liquidity premium on Treasury bonds tends to increase. Such periods are also associated with lower consumption. An increase in the

\footnote{The minor exception is the Economic Growth and Tax Relief Reconciliation Tax Act of 2001 (EGTRRA). The countercyclical part of EGTRRA concerns the accelerated implementation of the tax cuts but it does not concern the overall size of the cuts. For instance, Romer and Romer (2008) note that “this [countercyclical] motivation was almost always discussed in the context of making some of the cuts retroactive to January 1, 2001 rather than having them begin on January 1, 2002.” (p.84)}
demand for liquidity provided by Treasury bonds relative to municipal bonds increases the relative price for Treasuries and hence lowers the Treasury yield relative to the yield on municipal bonds. Equation (3) shows that this mechanism causes the BETRs θ_t to decrease and therefore decreases the measured path of expected forward tax rates $\mathbb{E}_t \tau_t$. To the extent that such liquidity shocks are not absorbed by monthly fixed effects or by the filtering of the time series, they induce a spurious positive correlation between changes in the measured path of expected tax rates and consumption changes. This possible correlation leads the response coefficients to be biased towards the cash-on-hand model if the rational-expectations model is the correct description of household behavior, and will lead to positive response coefficients even if the cash-on-hand model is in fact the true model. For these reasons – that income tax reforms in the sample are exogenous to the current state of the economy, and that any remaining liquidity shock biases the results against the basic rational-expectations model – equation (14) is a reasonable identification assumption.

The null hypothesis under the basic rational-expectations life-cycle income model (RELC) is that

$$H_{0}^{\text{RELC}} : \beta = -1.$$

Many alternative theories such as myopia, cash-on-hand constraints (COH), and others predict that consumption does not respond to news. Hence, a natural alternative hypothesis is

$$H_{0}^{\text{COH}} : \beta = 0.$$

[Figure 10 about here.]

3.1 Two Sources of Identification

To summarize, I combine two sources of variation to identify the response of household consumption to news about future income taxes. First, I use changes in the path of expected top tax rate to identify the quantity of new information revealed at each point in time. Second, I use cross-sectional variation in expected average tax rates since changes in expected average tax rates determine the response of household consumption in the basic rational-expectations life-cycle model, while marginal tax rates affect the portfolio allocation decision. Figure 10 shows the changes in the average tax rate as a function of taxable income for all major income tax reforms in my sample. To generate these profiles I use a distribution of incomes with equally spaced grid points of $\$100$ increments. I feed this income distribution into the TAXSIM calculator and assume that the households are married, file jointly, and have no children. For example, Figure 10(a) shows the change
in average tax rates caused by the first Reagan tax cut (ERTA 1981) as a function of taxable income. The tax cuts were phased-in over three years from 1981 to 1983. The thick black line shows the total change by comparing the average tax rate after the reform in 1984 with the average tax rate before the reform in 1980. Figure 10(a) emphasizes the fact that households were affected differently by the income tax changes depending on the taxable income.

The average tax rates imputed in the CEX have more variation than Figure 10 suggests. This additional variation comes from the fact that different households have different family characteristics, such as the number of children and dependents or the marital status, as well as different deductions, exemptions, and tax credits. The CEX provides a rich set of household characteristics that allows me to compute household specific tax rates. The only main input variables used by TAXSIM that are missing from the CEX are short- and long-run capital gains. The fact that changes in the average tax rate are not constant as a function of taxable income provides identifying variation in the cross-section when I control for monthly fixed effects.

3.2 Consumption Response of High-Income Households

The news shock that I identify from the municipal yield spread is most relevant for high-income households, since equation (11) shows that changes in the expected marginal tax rate are most closely related to changes in the expected average tax rates for high-income households. Therefore I start my analysis of the consumption response to tax news shocks by restricting the sample to high-income households. I then extend the analysis to the full sample of households that are directly affected by income tax changes. The interpretation of the results for this larger sample of households will depend more strongly on the validity of equation (10) for lower-income households. On the other hand, the full sample allows me to move beyond testing the basic rational-expectations life-cycle model. Using differences in household characteristics and the larger sample size I can assess the importance of heterogeneity and non-linearity in the consumption responses. Using the full sample also makes the estimates comparable to other studies that use household consumption data as well as to studies that use aggregate data.

[Table 3 about here.]

71 The definition of high-income households as the top quartile of the income distribution is motivated by the high correlation of their average tax rates over the sample period; see Kueng (2012b). At the same time, the fact that the tax rates are not perfectly correlated even among those high-income households provides identifying variation in the cross-section.
Column (1) of Table 3 shows the regression results of estimating equation (13) using high-income households. Nondurables and services (consumption henceforth) increase by 1.1% in response to a 1% increase in the expected after-tax lifetime income. The point estimate is statistically different from zero, thereby rejecting the cash-on-hand model, but I cannot reject that the coefficient is -1; so the consumption response of high-income households to tax news is consistent with the basic rational-expectations life-cycle model. This of course does not confirm the basic model, and given the relatively large standard errors many other models that also feature forward-looking behavior are consistent with the estimated response.

The estimated coefficients of the control variables are in line with the previous literature. Not surprisingly, changes in the family composition strongly affect household consumption. The household age profile one the other hand is not statistically significant at quarterly frequency which is consistent with previous studies such as Souleles (1999, 2002).

3.3 Consumption Response in the Full Sample

Column (2) of Table 3 shows the consumption response to tax news shocks using all households that pay income taxes at some point in their life. The estimate is halfway between the cash-on-hand model and the basic rational-expectations life-cycle model, and is sufficiently precise to reject both models. The point estimate in the full sample is similar to the estimated response of aggregate consumption to predictable income changes reported by Campbell and Mankiw (1989). However, the two estimates are not directly comparable. Campbell and Mankiw measure the response of consumption to predictable changes in current income. The estimates reported in this paper differ from these excess sensitivity coefficients since they reflect the percentage change of consumption in response to a 1% change in the expected after-tax lifetime income.

3.4 Understanding the Different Responses

There are two main potential explanations for the different responses in the full sample and the sample of high-income households. The first explanation is that the tax news...
shock might be a poor measure of changes in the after-tax lifetime income of lower-income households. The resulting measurement error would bias the coefficient up towards zero. There are several factors that could increase the measurement error for lower-income households. For example, the assumptions in equation (10) might fail or there might be offsetting government transfers that affect lower-income households differently than high-income households. It is also conceivable that household income is correlated with the household’s steady state discount factor δ; lower-income households might be less patient than high-income households. In Kueng (2012b) I address some of these issues.

A second interpretation of the results is that households form expectations differently and this heterogeneity might be systematically related to household income. More educated households might acquire and process information more easily than households with less education. Households might rationally choose to ignore news that do not affect their after-tax lifetime income much if there are costs to acquiring or processing information. Lower-income households might also face cash constraints that prevent them from responding optimally to news. To gain more insight into the causes of the difference between the full sample and the high-income sample response I use the full sample of households but condition the response using additional restrictions.\footnote{This paper cannot address the other main explanation, that the different response stems from mis-measuring tax news shocks for lower income households. Kueng (2012a) addresses this issue directly by identifying a different type of income news shocks that affects lower income households relatively more than higher income households.}

Models of near (or bounded) rationality and of rational inattention predict that households only respond to shocks that are large relative to some metric and that there is a region of inaction depending on the size of the news shock.\footnote{See for example Akerlof and Yellen (1985), Cochrane (1989), Woodford (2002), Sims (2003), and Reis (2006).}

In row (1) of Table 4 I estimate equation (13) in the full sample, but using only the largest 50% of news shocks in absolute value. Household consumption responds by a factor of 1.1 to news about large tax shocks. Models of near rationality or rational inattention are therefore also consistent with the lower response in the full sample and the higher response conditional on the shock being large in absolute value.

Next I investigate whether liquidity constraints can help to explain the different response of the high-income sample and the full sample. If lower-income households are more credit constrained than high-income households then one should see a weaker response in the full sample compared to the response in the high-income sample, which is the high-income sample. It is this difference in the ability to discriminate between the cash-on-hand and the basic rational-expectations life-cycle income model that I analyze next.
what we observe. Following Zeldes (1989) I split households into a sub-sample that reports having low liquid assets and a sub-sample that reports a sufficient amount of liquid assets and hence is least likely to be affected by cash constraints. I define liquid assets as the sum of assets in savings and checking accounts, and I assume that households with liquid assets in excess of 2% of total annual expenditures are not credit constrained. Since the 1st percentile of tax news shocks is larger than -2\%, this threshold guarantees that those households can respond one-for-one to large negative shocks. Moreover, defining the thresholds for liquid wealth as a function of total annual expenditures adjusts for the differences in (permanent) income across households.

Rows (4) and (5) of Table 4 show that the consumption response of households with and without sufficient liquid assets is indeed different. These results suggest that liquidity constraints do seem to significantly affect the response of nondurables and services to news shocks.\footnote{It is well known that households in the CEX significantly under-report wealth; see for example, Branch (1994) and Lusardi (1996). In particular, there are too many households that report having substantial income but no liquid assets. I therefore group these households separately to avoid contamination of the consumption response of household with low liquid wealth. Row (6) of Table 4 confirms the suspicion that many households that report having no liquid wealth are in fact not cash-constrained. The consumption response is negative, although not statistically significant.}

However, models of liquidity constraints also predict an asymmetric response depending on the sign of the shock. A cash-constrained household can always lower its consumption in response to bad news but cannot increase consumption in response to good news that have not materialized yet. If the news is sufficiently bad then it is indeed optimal for the household to cut its consumption.\footnote{The shock is sufficient bad if it causes the household’s optimal consumption path to drop enough such that the liquidity constraint in the current period is not binding anymore.} In Table 4, rows 2 and 3, I test for an asymmetric consumption responses by estimating the consumption response to large negative and large positive news shocks. The consumption response to large negative and large positive shocks is not different and both coefficients are statistically significantly different from zero but not from -1. This symmetric response can be explained by the fact that most tax reforms in the sample affected higher-income households more than lower-income households. Therefore, the consumption response to large shocks is driven by households that are not cash-constrained.

Finally, I investigate the potential role of heterogeneous expectation formation to explain the different responses. Models of rational inattention predict that households with lower costs of acquiring and processing information should respond more to a news shock holding fixed the size of the shock. Rows (7) and (8) of Table 4 shows the consumption response as a function of the household’s level of education. The response in the full sample is entirely driven by households with a college degree, who respond one-for-one
to news shocks. The response of households without a college degree is not statistically different from zero. While education and income are of course not independent, these results nevertheless suggest that heterogeneity in education might explain differences in how households form expectations.

4 Conclusion

This paper identifies tax expectations using the yield spread between taxable and tax-exempt bonds with maturities of one to thirty years. Combining these tax expectations with household consumption data shows that the basic rational-expectations life-cycle model describes the behavior of high-income households well. This paper is the first to directly measure the response of household consumption to news shocks, and thus is the first direct test of the theory’s restriction on the response of household consumption to new information.

In this paper I also document departures from the basic life-cycle model. The full cross-section of households responds only half as much to news shocks as predicted by the life-cycle theory. While liquidity constraints can account for some of this difference, they cannot fully explain it, since the response of unconstrained households is still too low. However, the different responses in the two samples are fully consistent with both rational inattention or near rationality, as well as with heterogeneous expectation formation across households; households respond according to the life-cycle theory to large news shocks and consumption of more educated households also conforms with the basic theory.

While a full analysis of the macroeconomic implications of these results is beyond the scope of this paper, it is nevertheless useful to consider certain policy issues. The consumption response to news shocks suggests an additional anticipation channel exists through which fiscal policy can affect the economy. This is particularly interesting given that the long implementation lag (or “inside lag”) of fiscal policy is often used as an argument against countercyclical fiscal policy and in favor of monetary policy. This policy lag might be less of a concern if households respond directly to the news and do not wait for the actual implementation of the policy.

However, some qualifications to this analysis are necessary. These results show that the aggregate response stems mostly from high-income households, that the policy must affect household lifetime income and not just current income, and that the policy must be credible in order to change household expectations. As such, tax policies that trigger large anticipation effects may not be good countercyclical policy instruments. Nonetheless, in situations where the recovery is expected to be slow, or if monetary policy is ineffective
as in a liquidity trap, such fiscal policies might offer additional options.

The flip side of this argument is that the size of effective countercyclical fiscal policies is bounded. The evidence presented in this paper suggests that the consumption response to news is stronger if tax changes are large. Since countercyclical policies are usually designed to be budget neutral over the business cycle, households will realize that countercyclical fiscal policy has little effect on lifetime income. Thus, unconstrained households may not respond to either the news shock or to the actual policy if the announced policy is large but designed to be countercyclical.

Clearly, more research on the response of households to news shocks needs to be undertaken before such data can offer policy guidance that is empirically well-grounded. Two directions seem particularly promising for future research. First, it would be interesting to extend this analysis to other margins of adjustment, in particular to the labor supply response and to the response of taxable income.78 Second, identifying more news shocks that directly affect household budget sets is clearly desirable in order to verify the results of this study. A particularly useful task is the identification of news shocks that affect lower-income households directly. Such additional independent news shocks could be used to more thoroughly examine the cause of the different responses between high-income and lower-income households reported in this paper.

References

78 The argument that taxable income is a sufficient statistic for all margins of adjustment goes back to Feldstein (1995, 1999). However, recent literature questions this finding, since taxable income is prone to reporting problems; see for example, Gorodnichenko, Martínez-Vázquez and Sabirianova Peter (2009) and Chetty (2009). Therefore, consumption may be a better summary statistic of all behavioral responses to tax shocks.

<table>
<thead>
<tr>
<th>Type of Bond :</th>
<th>In-State Municipal</th>
<th>Out-of-State Municipal</th>
<th>Treasury</th>
<th>Corporate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Alaska</td>
<td>no personal income tax 1979-2010</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Arkansas</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Arizona</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>California</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Colorado</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Connecticut*</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Delaware</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Florida</td>
<td>no personal income tax 1977-2010</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Georgia</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Hawaii</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Idaho</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Illinois</td>
<td>taxable</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Indiana</td>
<td>exempt</td>
<td>exempt</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Iowa</td>
<td>taxable</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Kansas</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Kentucky</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Louisiana</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Maine</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Maryland</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Massachusetts*</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Michigan</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Minnesota*</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Missouri</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Montana*</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Nebraska</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Nevada</td>
<td>no personal income tax 1977-2010</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>no personal income tax 1977-2010</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Type of Bond</td>
<td>In-State Municipal</td>
<td>Out-of-State Municipal</td>
<td>Treasury</td>
<td>Corporate</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>------------------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>New York*</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>North Carolina</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>North Dakota</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Ohio</td>
<td>exempt</td>
<td>exempt</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Oregon*</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Pennsylvania*</td>
<td>exempt</td>
<td>exempt</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>South Carolina</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>South Dakota</td>
<td>no personal income tax 1977-2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tennessee</td>
<td>no personal income tax 1977-2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas</td>
<td>no personal income tax 1977-2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utah</td>
<td>taxable</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Vermont</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Virginia</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Washington</td>
<td>no personal income tax 1977-2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington D.C.</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>West Virginia*</td>
<td>exempt</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Wisconsin*</td>
<td>taxable</td>
<td>taxable</td>
<td>exempt</td>
<td>taxable</td>
</tr>
<tr>
<td>Wyoming</td>
<td>no personal income tax 1977-2010</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The following states tax corporations on all interest income: Connecticut, Massachusetts, Minnesota, Montana, New Jersey, New York, and Oregon. Pennsylvania exempts corporations from all taxes on interest. West Virginia and Wisconsin tax corporations on their interest income from municipal bonds, but exempt interest from Treasury bonds.
Table 2: Break-even tax rate responses to changes in election probabilities.

Dependent variables: Break-even tax rates $\theta_{t,m}$ for the most commonly traded maturities m [raw data in %].

<table>
<thead>
<tr>
<th>Maturity</th>
<th>1-Year</th>
<th>2-Year</th>
<th>3-Year</th>
<th>5-Year</th>
<th>7-Year</th>
<th>10-Year</th>
<th>20-Year</th>
<th>30-Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price of Bush Contract in 2000 [cents]</td>
<td>0.019</td>
<td>-0.018***</td>
<td>-0.031***</td>
<td>-0.033***</td>
<td>-0.028***</td>
<td>-0.024**</td>
<td>-0.006</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.010)</td>
<td>(0.011)</td>
<td>(0.009)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Price of Clinton Contract in 1992 [cents]</td>
<td>0.121**</td>
<td>0.075*</td>
<td>0.122***</td>
<td>0.076***</td>
<td>0.084***</td>
<td>0.090***</td>
<td>0.035**</td>
<td>0.040**</td>
</tr>
<tr>
<td></td>
<td>(0.051)</td>
<td>(0.044)</td>
<td>(0.039)</td>
<td>(0.025)</td>
<td>(0.021)</td>
<td>(0.021)</td>
<td>(0.015)</td>
<td>(0.017)</td>
</tr>
</tbody>
</table>

Notes:
- Regression results using daily election probabilities for the presidential election of 2000 and 1992 respectively. The tax reform enacted in 1993 (OBRA 1993) increased the statutory top income rate by 8.6% from 31% to 39.6% retroactively to January 1, 1993. The tax reform enacted in 2001 (EGTRRA 2001) reduced the statutory top income rate by 4.6% from 39.6% to 35% over 5 years and the reform in 2003 (JGTRRA 2003) accelerated the phase-in period to three years.
- The contracts yield 100 cents if the candidate wins and zero otherwise. Therefore, an increase of the price by 1 cent corresponds to a 1% increase in the perceived probability of the candidate winning the presidential election.
- Newey-West HAC robust standard errors in parentheses:
 - *** Significant at the 1 percent level.
 - ** Significant at the 5 percent level.
 - * Significant at the 10 percent level.
Table 3: Consumption response to tax news shocks

<table>
<thead>
<tr>
<th></th>
<th>high-income sample</th>
<th>full sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>tax news shock</td>
<td>-1.147***</td>
<td>-0.449**</td>
</tr>
<tr>
<td></td>
<td>(0.377)</td>
<td>(0.198)</td>
</tr>
<tr>
<td>age</td>
<td>-0.012</td>
<td>-0.016</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.023)</td>
</tr>
<tr>
<td>age^2/1000</td>
<td>0.056</td>
<td>0.105</td>
</tr>
<tr>
<td></td>
<td>(0.365)</td>
<td>(0.265)</td>
</tr>
<tr>
<td>Δ adults</td>
<td>1.960***</td>
<td>2.241***</td>
</tr>
<tr>
<td></td>
<td>(0.239)</td>
<td>(0.185)</td>
</tr>
<tr>
<td>Δ kids</td>
<td>0.772***</td>
<td>1.097***</td>
</tr>
<tr>
<td></td>
<td>(0.268)</td>
<td>(0.203)</td>
</tr>
<tr>
<td>monthly FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R^2</td>
<td>0.020</td>
<td>0.017</td>
</tr>
</tbody>
</table>

Notes: Consumption includes nondurables and services. The high-income sample consists of households with federal AGI above the 50th percentile of households with positive federal AGI. Depending on the tax year, this corresponds roughly to the top income quartile of all households. Reported standard errors in parentheses are adjusted for within-household correlations and heteroskedasticity.

*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
Table 4: Consumption response to tax news shocks in the full sample: extensions

<table>
<thead>
<tr>
<th>Size of tax news shock</th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) 50% largest shocks (in a.v.)(^a)</td>
<td>-1.125***</td>
<td>(0.359)</td>
</tr>
<tr>
<td>(2) 25% most negative shocks</td>
<td>-0.910*</td>
<td>(0.418)</td>
</tr>
<tr>
<td>(3) 25% most positive shocks</td>
<td>-0.880*</td>
<td>(0.511)</td>
</tr>
</tbody>
</table>

Liquid wealth (LW)\(^b\) :
<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) unconstrained: LW > 2% of TAE(^c)</td>
<td>-0.510*</td>
<td>(0.301)</td>
</tr>
<tr>
<td>(5) constrained: LW ∈ (0, 0.2%) of TAE(^c)</td>
<td>0.457</td>
<td>(0.861)</td>
</tr>
<tr>
<td>(6) LW = 0</td>
<td>-0.486</td>
<td>(0.346)</td>
</tr>
</tbody>
</table>

Education :
<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7) high school or less</td>
<td>0.222</td>
<td>(0.309)</td>
</tr>
<tr>
<td>(8) college or more</td>
<td>-0.870***</td>
<td>(0.287)</td>
</tr>
</tbody>
</table>

Notes: Consumption includes nondurables and services. All regressions also include a full set of monthly fixed effects, controls for changes in the number of adults and kids, and a quadratic in age; see Kueng (2012b). Reported standard errors in parentheses are adjusted for within-household correlations and heteroskedasticity.

\(^a\) a.v. = absolute value

\(^b\) liquid wealth is the sum of savings and checking accounts

\(^c\) TAE = total annual expenditure

*** Significant at the 1 percent level.

** Significant at the 5 percent level.

* Significant at the 10 percent level.
Figure 1: Yields of AAA general-obligation (GO) bonds of states with different tax treatment of in- and out-of-state investors.

The blue dashed line is the 10-year Treasury yield, which is taxable at the federal personal income tax rate but is exempt from state and local income taxes; see Table 1. The other four time series are 10-year bond yields of states that span the spectrum of possible tax treatments of in-state and out-of-state municipal bond investors. The red crossed line is the yield of a AAA general-obligation (GO) bond of the state of Pennsylvania, which exempts both in-state and out-of-state municipal bond investors. The green line with triangle markers is the yield of a AAA GO bond of the state of Massachusetts, which exempts in-state investors from state taxes but taxes out-of-state investors. The black solid line is the yield of a AA insured bond of the state of Illinois, which taxes both in-state and out-of-state investors. I use a AA insured bond because there is no AAA GO for the state of Illinois, which is one of only four states that taxes both in- and out-of-state investors – the others being Iowa, Utah, and Wisconsin, for which I do not have bond yield data. Finally, the blue dots represents the time series of AAA GO 10-year bond yields of the state of Texas, which has no personal income tax rate.
Figure 2: 2-year and 15-year break-even tax rates (BETR) $\theta_{t,2}$ and $\theta_{t,15}$ against the marginal tax rate of the top 1%.

The thin lines are the raw data and the thick lines are the corresponding low frequency components of the 2-year and the 15-year break-even tax rates, respectively, corresponding to equation (3). The blue thin dashed line is the top 1% tax rate taken from Saez (2004). The solid blue line is the ’33% tax bubble’ during the years 1988-1990; in this period, the top marginal tax rate is higher than the marginal tax rate of the top 1% of the income distribution.
Figure 3: Average Marginal Tax Rate of the Marginal Investors calculated from the Survey of Consumer Finances (SCF).

The blue dots are the estimated marginal tax rate of the marginal investor defined as the asset-weighted average of the effective marginal tax rates over all households that own both taxable and tax-exempt bonds. Two standard error bands are shown around the point estimates of the marginal investor’s marginal tax rate. The black lines are the marginal tax rates of different percentiles of the income distribution taken from Saez (2004).
The black line is the estimated response of the break-even tax rates \(\hat{\beta} \) from regression equation (6) to changes in the election probability of George W. Bush during the five months prior to Election Day in 2000; the black dashed lines are 95% Newey-West confidence bands. The blue lines show the population coefficients \(\beta_{pf} \) one should obtain under perfect foresight and assuming that the counter-factual path of tax rates under President Gore is fixed at \(\tau_{2000} = 39.6\% \). Two scenarios for the path of future tax rates beyond 2011 are shown, one where the Bush tax cuts expire in 2011 as scheduled and one where they become permanent.
The black line is the estimated response of the break-even tax rates $\hat{\beta}$ from regression equation (6) to changes in the election probability of Bill Clinton during the three months prior to Election Day in 1992; the black dashed lines are 95% Newey-West confidence bands. The blue lines show the population coefficients β^{pf} one should obtain under perfect foresight and assuming that the counter-factual path of tax rates under President H. Bush is fixed at $\tau_{1992} = 31\%$. Two scenarios for the path of future tax rates beyond 2011 are shown, one where the W. Bush tax cuts expire in 2011 as scheduled and one where they become permanent. The two vertical lines show the enactment dates of the tax reforms in 2001 and 2003, EGTRRA and JGTRRA respectively.

Figure 5: Path of Break-Even Tax Rates during presidential election of 1992.
The black line is the expected tax path recovered by inverting equation (7) with a ridge regression with optimal regularization parameter $\mu = 0.15$. The top rate in 2000 is added to the expected changes in the tax path to make it comparable to the ex-post realization of the tax path; see Figure 4 for the definition of the two blue lines.
Figure 7: Path of Expected Tax Rates during presidential election of 1992.

The black line is the expected tax path recovered by inverting equation (7) with a ridge regression with optimal regularization parameter \(\mu = 0.05 \). The top rate in 1992 is added to the expected changes in the tax path to make it comparable to the ex-post realization of the tax path; see Figure 5 for the definition of the two blue lines.
Figure 8: Average break-even tax premium $\mathbb{E}[\Lambda_t]$ as a function of the maturity; see equation (9).

This figure shows the evolution of the path of expected tax rates between 1977 and 1982 in the run-up to the first Reagan tax cut (ERTA 1981). The dashed line, which represents the perfect-foresight tax path, is the marginal tax rate of the top 1% of the income distribution taken from Saez (2004). The bond market did not anticipate the Reagan tax cuts until the election year of 1980. However, the bond prices already incorporate the second Regan tax cut (TRA 1986) by the end of 1981. The web appendix of this paper – https://sites.google.com/site/lorenzkueng/ – contains a video of the evolution of $E_{t}[au]$ from January 1977 to August 1982 that shows monthly changes in the path of expected tax rates.
Figure 10: Change in the average tax rate caused by income tax reforms between 1980 and 2003.

All figures were generated with the TAXSIM calculator using an income distribution with $100 increments. The tax rates are calculated for married households filing jointly and having no children.