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Abstract

We develop an integrated model of data pricing and targeted advertising. A monopolistic

data provider determines the price to access “cookies,”i.e. informative signals about individual

consumers’preferences. The demand for data is generated by advertisers that seek to tailor their

advertising spending to the match value with each consumer, and by a publisher that wishes to

offer targeted advertising space. We characterize the demand for information from both sides

of the advertising market, and we derive the optimal pricing policy for the data provider. The

data provider profitably restricts information supply to raise the price of information. This may

lessen or foster downstream competition, depending on the advertising technology. However,

competition among data sellers need not reduce the price of information. Finally, we explore

the implications of nonlinear pricing of information, and characterize the exclusive data sales

that emerge as part of the optimal mechanism.
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1 Introduction

As the cost of collecting, aggregating and storing data has dramatically decreased over the past

decade, new markets for data have emerged in many forms and varieties. Individual firms amass

both internal data and external data. The former is proprietary data, which is generated by the

transactions of the firm, while the latter is made available by data providers who collect, mine,

and resell detailed consumer-level information.1 Both kinds of data enable firms to improve their

competitive position, vis-à-vis potential customers and other firms. Such competitive advantages

are mainly driven by an enhanced ability to segment their consumer population, and to more

precisely tailor their products and prices to the customer’s needs.

Data vendors offering access to databases and data analytics provide information with respect

to virtually any economic transaction. To name a few examples, financial data providers, such as

Bloomberg and Thomson Reuters, provide real-time and historical financial data. Credit rating

agencies, whether for individuals, such as Equifax and Transunion, or for business and govern-

mental agencies, such as Moody’s and Standard & Poor’s, provide detailed financial information.

Data brokers, such as LexisNexis and Acxiom, maintain and grow large databases on individual

consumers. Online aggregators such as Spokeo and Intelius mine publicly available data to compile

personal data profiles.

The information purchased from these vendors is used by “downstream”firms to reach out to

new or existing customers. This may occur through the direct marketing channels (e.g. phone,

e-mail) or through intermediated channels (e.g. advertising). These channels are not mutually

exclusive, yet they might differ in their implications for the value of precision, for the incentives to

acquire information, and for potential violations of the users’privacy. The former channel is the

main use of data purchased through vendors of detailed user profiles such as Acxiom or Linkedin.2

The latter channel is especially relevant for online display advertising markets.

Several platforms, such as BlueKai, promote online marketplaces for the exchange of user data.

While this has also led to severe concerns over users’privacy on the web, these platforms monetize

the match-making potential by linking websites that monitor traffi c to advertisers who are interested

in information about individual users. This is possible in part because many advertising networks

and exchanges allow advertisers to “bring their own data” when specifying their real-time bids

for selected impressions.3 This in turn enables advertisers to better target their messages on

other websites, by tracking or following their desired users across different pages. Sometimes, user

1Data acquisition often takes place online through “cookies.”For example, more than half of the sites examined by
a 2010 Krux.com / Wall Street Journal study installed 23 or more “third party”cookies on visiting users’computers.
Dictionary.com installed the most, placing 159 third-party cookies. (The Web’s New Gold Mine: Your Secrets, the
Wall Street Journal, July 30, 2010.)

2Through Acxiom’s Consumer Data Products Catalog, “corporate clients can buy data to pinpoint households
that are concerned, say, about allergies, diabetes or “senior needs.”Also for sale is information on sizes of home loans
and household incomes.” (You for Sale: Mapping, and Sharing, the Consumer Genome, the New York Times, June
16, 2012.)

3Real-time bidding accounts for a growing share of internet advertising revenues: Forrester Research estimates that
real-time bidding will constitute 18% of the online display-ad market this year, up from 13% last year. (Real-Time
Auctions Drive Rise in Online Tracking, the Wall Street Journal, June 17, 2012.)
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behavior data is already de facto incorporated in the advertising products, for example in the form

of a retargeting option. This is often the case with large advertising networks who collect their own

data, such as Yahoo or Google.

In the present paper, we investigate the role of data management platforms on the price and

allocation of information about individual consumers. We seek to provide a framework to address

questions about the data industry and in particular about its interaction with online and offl ine

advertising markets. Thus, we develop a flexible model that applies to direct marketing strategies,

while at the same time capturing the key features of online display advertising.

In our framework, we consider heterogeneous consumers and firms. Crucial to our analysis

is a match-value function that captures the potential surplus that can be generated by a given

firm and a given consumer. In our baseline model, we consider horizontal heterogeneity in match

values. This could emerge, for example, from a market with horizontally differentiated products,

and heterogeneous preferences of consumers over the product space. In order to realize their

potential match value, firms must contact consumers, and they do so through a single publisher,

which is best seen as a large advertising network (or a collection of websites). In the online-

advertising interpretation, we abstract from the details of the auction mechanisms used to allocate

each impression, and we summarize the marginal cost of advertising through a constant price.

Advertisers wish to tailor their spending to the match value with each consumer. Because they

are unable to do so under prior information only, they are willing to pay for additional signals. The

lack of information about individual users induces two kinds of risk: on the one hand, firms risk to

waste advertising on low-value matches; on the other hand, they leave money on the table by not

pursuing high-value matches as intensively as they could.

The key innovation of our framework is to allow for selective data purchases. In particular, firms

may buy bits of information about specific user types, so to target their marketing efforts or their

advertising spending. Online, targeting is made possible by cookie matching. In our model, we

focus on the sale of information “by the unique user.”4 Formally, this means the set of information

structures available to an advertiser consists of specific partitions of the space of match values,

corresponding to the ability to “identify”specific users.

Information about consumers is generated by the data purchased from a fourth-party data

provider (i.e., neither a competing firm nor the consumer). As a consequence, firms make their

advertising decisions under an information structure that has been determined “upstream,” i.e. in

the market for data. Another key feature of our analysis is the pricing structure of information.

We initially restrict the data provider to set a unit price for each information bit, or cookie, and

later explore alternative data pricing mechanisms. The insights obtained under linear pricing are

informative of other models of data sales with market power. These include: auctions with a reserve

price; imperfectly competitive markets; and nonlinear monopoly pricing in the presence of vertical

buyer heterogeneity.

4This closely follows the real-world online markets, where cookies are typically sold at a price per unit of data
(“per unique,”or “per stamp”).
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1.1 Overview of the Results

Our baseline model treats both prices of cookies and advertising as given, and characterizes adver-

tisers’demand for information. We show that advertisers choose to purchase information about

two convex sets of consumers, i.e. those with the highest and lowest match values. When advertis-

ers encounter a consumer they have no information about, they cannot tailor their spending, and

choose a constant action. Therefore, they try to minimize the variance of match values within the

set of “unknown”consumers. Furthermore, under quite general conditions, the data-buying policy

takes the form of a single cutoffmatch value, and advertisers buy information about all users above

(or below) the cutoff. The optimality of each data-buying policy is related to the two sources of

mismatch risk, and can be established based on properties of the complete-information profits alone:

in particular, if the curvature of the profit function is increasing (positive third derivative) then the

wasteful-ads risk is less prominent, and advertisers buy data about the highest-value consumers.

The opposite is true for the case of decreasing curvature.

In our model, the socially optimal allocation of information involves providing full disclosure of

all match values to the advertisers. Not surprisingly, a monopolist data provider maximizes profits

by restricting the supply of information and raising the price of cookies. We focus on the monopo-

list’s response to changes in the precision of the information. More precise information corresponds

to mean-preserving spreads of the distribution of match values. We identify supermodularity con-

ditions under which the monopolist chooses to profit from a larger supply of (very high- and very

low-value) high-demand cookies, and thus increases the price of data. On the contrary, the compar-

ative statics of the monopoly price with respect to the cost of advertising depend on the curvature

of the match cost function. Intuitively, the cost of advertising reduces both the payoff advertisers

can obtain through better information, and their uninformed payoff. The two contrasting effects

on the demand for information are related to the optimal cookie-buying policy. A picture emerges

whereby if advertisers choose to purchase the highest-value signals, they are also willing to pay less

when the cost of advertising increases.

We then extend our model in three main directions: by allowing publishers to purchase in-

formation; by exploring different structures for the markets for data and for advertising; and by

introducing more sophisticated data-pricing techniques.

In the online world, user-level information is often bundled with advertising space itself (though

the billing is by and large separate). Thus, we move towards an integrated model of data pricing

by allowing the publisher to buy the data as well. We assess the profitability of buying data for

either side of the advertising market, and quantify the value of information based on its strate-

gic use “downstream.”The incentives to acquire information depend on the characteristics of the

matching cost function. Most importantly, while advertisers have a positive willingness to pay for

information, the publisher may not. In particular, the publisher wishes to buy data only when the

complete-information demand for advertising is convex in the value of the match. Furthermore, the

interaction between all three parties can lead to vivid segmentation patterns for the online adver-

tising space. In particular, we find that segmentation of advertising space can occur in equilibrium,
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where premium impressions are sold by an informed publisher, and information about residual

impressions is purchased by the advertisers.

We turn to the analysis of market structures by endogenizing the unit price of advertising

space. We assume that each user has a fixed total attention span, which limits the aggregate

intensity of firms’contacts with a given consumer. In the case of online advertising, this upper

bound may be equivalently interpreted as the amount available advertising space. The equilibrium

price of advertising is determined through market clearing. Perhaps not too surprisingly, the data

provider’s optimal strategy consists of raising the price of data. However, two completely different

mechanisms may lead to the same conclusion, depending on how the cost of advertising is affected

by the distribution of information across advertisers. Conditions on the advertising technology

determine whether the data provider wishes to augment or reduce the “congestion”of advertising

space. In the more intuitive case, the data provider can profitably restrict the supply of information

to lessen downstream competition and appropriate a larger fraction of the surplus.

In a related model, we explore possibility of consumers selling their own information. Formally,

this corresponds to a model with a fragmented population of sellers, each one having an exclusive

over one signal. Surprisingly, we find that concentrating sales in the hands of a single data provider

is not necessarily detrimental to social welfare, and that prices are higher under fragmentation,

independently of any privacy concerns.

We conclude our paper by extending the scope of the pricing mechanisms available to the data

provider. We introduce nonlinear pricing and show that the data provider can screen vertically

heterogeneous advertisers by offering to sell subsets of the database at a decreasing marginal price.

The optimal nonlinear price determines endogenous exclusivity restrictions on a set of “marginal”

cookies: in particular, second-best distortions imply that some cookies that would be profitable for

several advertisers are exclusively bought by a subset of high-value advertisers. Furthermore, if we

restrict attention to binary actions for the advertisers (contact, no contact), we can show that a

cookie-based information structure policy (perfectly revealing match values above a threshold only)

is a revenue-optimal mechanism. In turn, this optimal mechanism can be decentralized by charging

a nonlinear tariff for access to portions of the monopolist’s database.

1.2 Related Literature

The issue of optimally pricing information in a monopoly, as well as a competitive market has been

addressed in the finance literature since the seminal contributions by Admati and Pfleiderer (1988),

Admati and Pfleiderer (1990) and Allen (1990). The main difference between the standard approach

to pricing financial information and our paper’s is in the bundled vs. unbundled information sales.

In particular, previous papers have focused on the pricing an information structure that generates

an informative signal for all realizations of the state of the world. This is also the case in the work

of Sarvary and Parker (1997), who model competing consulting companies, and of Anton and Yao

(2002), who model the sale of information to competing parties. In contrast, we focus on pricing

of information bits that allow firms to recognize specific user types. Iyer and Soberman (2000)
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address the issues of selling information to firms competing in a differentiated-products duopoly.

They focus on the implications for upstream and downstream revenue of selling heterogeneous

pieces of information, corresponding to valuable product modifications. Our model also focuses on

selling differentiated information bits, which can take different interpretations depending on our

match value function.

The related literature on the optimal choice of information structures is recent. Bergemann and

Pesendorfer (2007) consider the design of optimal information structures within the context of an

optimal auction. There, the principal simultaneously controls the design of the information and the

design of the allocation rule. More recently, Kamenica and Gentzkow (2011) consider the design of

the information structure by the principal when the agent will take an independent action on the

basis of the received information. Rayo and Segal (2010) examine a similar question in a model

with multidimensional uncertainty and private information on the agent’s cost of action.

The implications of specific information structures in auctions, and their implication for online

advertising market design, are analyzed in recent work by Abraham, Athey, Babaioff, and Grubb

(2012) and Celis, Lewis, Mobius, and Nazerzadeh (2012). Both papers are motivated by asymme-

tries in bidders’ability to access additional information about the object for sale. Consequently,

they examine the role of the distributions of valuations resulting from the private acquisition of

data by a single bidder. In particular, Abraham, Athey, Babaioff, and Grubb (2012) focus on

second price auctions in a common value environment, while Celis, Lewis, Mobius, and Nazerzadeh

(2012) propose an approximately optimal mechanism in a private values model. In a closely re-

lated contribution to these two papers, Kempe, Syrganis, and Tardos (2012) study the first-price,

common-value auction with asymmetrically informed bidders.

In our earlier work, Bergemann and Bonatti (2011), we analyzed the role of (exogenous) infor-

mation structures on the competition for advertising space. In this strategic environment, more

precise information about consumers’ locations allows for better targeting of advertisement mes-

sages, and improves firms’revenues. It may, however, be detrimental to the seller of the advertising

space. With a related motivation, in the present paper we investigate further the role of informa-

tion on industry profits, and the scope for profitable information intermediaries. We depart from

the model in Bergemann and Bonatti (2011) along two major directions: first, we endogenize the

information structure and investigate the price of the information itself; second, we consider firms

operating on interdependent product markets. In particular, we relate the mode of product-market

competition to the profitability of different information provision policies. The role of information

in a specific model of competition is also analyzed in Ganuza (2004), while relevant notions of

ranking of information structures are developed in Johnson and Myatt (2006) and in Ganuza and

Penalva (2010).

In parallel work, we complement the individual tailoring of actions to a specific signal with a

model of market tailoring, in which competing firms purchase information about market conditions.

To the best of our knowledge, our paper is the first to address the question as to what happens if

information can be made available (at a price) by a third party. To the extent that the database
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provides the competitor with a certain information structure, we might say that the database, by

choice of the information structure, induces a specific game of incomplete information among the

competitors (while being consistent with the prior information of the agents). The associated class

of games is analyzed in Bergemann and Morris (2011b) and Bergemann and Morris (2011a) as a

problem of robust prediction and an associated equilibrium concept, referred to as Bayes correlated

equilibrium.

Finally, our work is related to model of noisy information in an oligopoly environment. In

particular, the value of information has been extensively studied in the context of information

sharing by oligopolists, see Raith (1996) for a general model and Vives (1999) for a summary of

the results in the literature.

2 Model

2.1 Matching and Preferences

We consider a symmetric model with a unit mass of consumers i and advertisers j, a single publisher,

and a monopolistic data provider. Each (i, j) consumer-firm pair generates a potential match value

v ∈ V = [vL, vH ]. Heterogeneity in match values is purely along an horizontal dimension. To

capture this, we impose a symmetry restriction on the distribution of match values. In particular,

we assume that for each consumer i, the distribution of match values v (i, j) with firms j is given

by F (v). Likewise for each firm j, match values with consumers i are identically distributed

according to F (v). Examples of distributions that satisfy our symmetry assumption include: i.i.d.

match values across consumer-firm pairs; and uniformly distributed firms and consumers around a

unit-length circle, with match values given by a decreasing function of distance.

Firms must advertise to consumers in order to realize the potential match value. Advertising

space can be purchased from the publisher at a constant marginal cost c. The publisher allows firms

to target messages to each consumer i, thereby ruling out duplication risk, but the publisher has

no information about pair-specific match values other than the prior distribution.

The advertising technology is summarized by the match cost function m (q), which denotes the

amount of advertising space m required to generate a match with probability q. The value of an

actual match is then given by v (i, j). Equivalently, we may think of q as the intensity of the contact

achieved by firm j’s advertising, i.e. q is not restricted to [0, 1]. The complete-information profits

of a firm generating a contact of intensity q with a consumer of value v are given by

π (v, q) , vq − cm (q) .

2.2 Information and Timing

We formulate the information acquisition problem of a firm purchasing data about its consumers

as the choice of an information structure H from a set H. Each information structure determines
a distribution of signals s ∈ S that are informative about v. The firm uses the signals to tailor
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Figure 1: Timing

its advertising effort q. Finally, each information structure H is sold at a price (exogenous for

now) p (H) . We adopt the following canonical formulation for a decision maker’s (i.e. a firm’s)

information acquisition problem:

max
H∈H

[
EH
[
max
q
{E [v | s] q − cm (q)}

]
− p (H)

]
, (1)

where the first expectation is taken with respect to signals s, conditional on the information struc-

ture H.

We now impose restrictions on the set of information structures and on the related price func-

tions. In particular, we assume that data about individual users is sold in the form of cookies, i.e.

consumer-specific signals. Thus, the set of available signals coincides with the set of match values.

In turn, the set of available information structures coincides with the set of measurable subsets

of V . If firm j chooses the set of signals Aj ⊂ V , then it is endowed with the following signal

structure:

s (v;A) =

{
v if v ∈ Aj ,
∅ if v 6∈ Aj .

Therefore, we are introducing a model where agents can choose which realizations of a payoff-

relevant variable they want to acquire information about. In the rest of the paper, we shall denote

by “cookie v”the signal s = v that allow to identify consumers i such that v (i, j) = v. In other

words, if firm j purchases cookie v, then the signal v belongs to the set Aj . Finally, we assume

that cookies v are sold at a constant linear price p (i) = p.

The timing of the model is summarized in Figure 1.

3 Demand for Advertising and Information

When facing a prospective consumer i, each firm chooses the advertising intensity to maximize

expected profits given the available information. Therefore, the demand for advertising space of a

firm that acquired signals A ⊂ V is given by

q∗ (v;A) = arg max
q
EA [π (v, q)] = arg max

q
[EA [v] q − cm (q)] . (2)
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We denote the complete-information demand for advertising space by q∗ (v). Therefore, for all

v ∈ A, the firm’s demand for advertising satisfies

v = cm′ (q∗ (v)) . (3)

Whenever v 6∈ A, advertisers choose a constant advertising intensity q̄ that satisfies

E [v | v 6∈ A] = cm′ (q̄) . (4)

Therefore, under information structure A, the firm chooses

q̄ = q∗ (E [v | v 6∈ A]) . (5)

We can describe the firm’s profits π (v, q) under complete information and under prior informa-

tion, by letting A = V and A = ∅ respectively. In particular, we define the complete-information
profits as

π (v) , max
q
π (v, q) = vq∗ (v)− cm (q∗ (v)) .

Note that π (v) is strictly convex, as we started with a linear objective. Under prior information,

profits are given by the linear function

π (v, q̄) = vq∗ (E [v])− cm (q∗ (E [v])) .

Figure 2 describes both profit functions for the case of quadratic match costs cm (q) = q2/2 and

match values uniformly distributed on the unit interval. As intuitive, under prior information, the

Figure 2: Complete- and Incomplete-Information Profits
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firm chooses excessive (wasteful) advertising vis-à-vis low-value consumers and insuffi cient adver-

tising vis-à-vis higher-value consumers. The firm therefore has a positive willingness to pay for

information.

To characterize the demand for cookies, we specialize the information acquisition problem in (1)
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to our setting. Given the prices of signals p and advertising space c, each firm solves the following

problem:

max
A

[∫ vH

vL

(vq∗ (v;A)− cm (q∗ (v;A))− 1v∈Ap) dF (v)

]
.

As Figure 2 suggests, the value of information is highest for extreme match values. Our first result

establishes the optimality of excluding a connected set of cookies from purchase.

Lemma 1 (Cookie Intervals)
For any c and p, there exist thresholds vL ≤ v1 ≤ v2 ≤ vH such that each firm purchases all cookies

in the set A = [vL, v1] ∪ [v2, vH ].

We can now reformulate the firm’s information-acquisition problem as follows:

max
v1,v2

∫ v2

v1

[p− v (q∗(v)− q̄) + c (m (q∗(v))−m (q̄))] dF (v) , (6)

s.t. cm′ (q̄) = E [v | v ∈ [v1, v2]] .

In other words, the firm chooses the set of cookies to exclude, which yields a marginal benefit

of p, taking into account the effect of cookie purchases on its own inference problem whenever

uninformed. The average excluded type then determines the uninformed demand for advertising

space q̄, which in turn affects the value of information.

3.1 One-Sided Purchases

Note that a necessary condition for exclusion of an interior interval (i.e. v1 > vL and v2 < vH) is

that the marginal value of information is equal to the price of cookies at both extremes. The value

of information about type v is given by

v (q∗ (v)− q̄)− c (m (q∗ (v))−m (q̄)) ,

where q̄ is the optimal intensity vis-à-vis the average type in the exclusion interval. For example,

suppose types are uniformly distributed, so that the average type is the midpoint (v1 + v2) /2. In

order for the gains from information at v1 and v2 to be equalized, the curvature of the indirect profit

function must be constant. Thus, as in the case of Figure 2, complete-information profits must

be quadratic in v. The following result establishes suffi cient conditions under which firms demand

cookies in a single interval, by excluding prospects at the top or at the bottom of the distribution

only.

Lemma 2 (Single Cookie Interval)

1. If both m′ (q) and F (v) are convex, then A (c, p) = [vL, v1 (c, p)] .

2. If both m′ (q) and F (v) are concave, then A (c, p) = [v2 (c, p) , vH ] .
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Examples of match cost functions with concave marginal costs include power cost functions,

m (q) = qa with a < 1/2. Examples of convex marginal costs include those derived from an

exponential matching technology, i.e. m (q) = −a ln (1− q) , with a > 0, and power cost functions

m (q) = qa, with a > 1/2. The knife-edge case of quadratic costs and uniformly distributed match

values (which is covered in both parts (1.) and (2.) of Lemma 2) has the interesting property of

being “location-free.”That means the returns from exclusion of an interval of cookies are a function

of its length only.

The main intuition for this the single-interval result can be traced back to the two sources

of the value of information, i.e. wasteful advertising for low types, and insuffi cient advertising

for valuable consumers. Lemma 2 relates the potential for mismatch risk to the properties of the

match cost function. In particular, when the curvature of the cost function is increasing, it becomes

very expensive to tailor advertising purchases to high-value consumers. In other words, the risk

of insuffi cient advertising is not very high, given the cost of advertising space. The firm then

purchases cookies related to lower-valued consumers. We can therefore specialize problem (6) to

the low-v cookies purchases, and derive the inverse demand curve in terms of the marginal cookie

v1 as follows:

p (v1) = v1 (q∗(v1)− q̄ (v1))− c (m (q∗(v1))−m (q̄ (v1))) , (7)

q̄ (v1) = q∗ (E [v | v > v1]) .

Conversely, when the curvature of the cost function is decreasing, profit levels are “steeper”at the

top, meaning the insuffi cient advertising risk is more relevant. Thus, firms purchase information

about high-value users. The corresponding demand for information is given by

p (v2) = v2 (q∗(v2)− q̄ (v2))− c (m (q∗(v2))−m (q̄ (v2))) , (8)

q̄ (v2) = q∗ (E [v | v < v2]) .

Figure 3 shows the complete-information profits and the actual profit levels under one-sided

purchases. We assume uniformly distributed values, and consider power cost functions cm (q) =

qb/b, with b ∈ {3/2, 3} , respectively. In the first panel, firms purchase cookies in the set A = [2/3, 1],

while in the second panel A = [0, 2/7].

3.2 Two-sided Purchases

We now derive conditions under which advertisers purchase both high- and low-v cookies. In

particular, we find that quadratic complete-information profits and symmetric density f (v) yield

a rich set of examples. In this case, the set of excluded types is always an interval centered on the

prior mean of v. We make the result formal in the following proposition.

Lemma 3 (Two-Sided)

11



Figure 3: High-v and Low-v Cookie Purchases
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Suppose match values are distributed symmetrically with mean v̄ = (vL + vH) /2, and matching costs

are quadratic, m (q) = q2/2. Advertisers purchase all cookies outside the set [v̄ − 2
√
cp, v̄ + 2

√
cp].

We can derive the inverse demand for information as an implication of Lemma 3. In particular,

it is given by

p (x) = x2/4c, (9)

where x = v̄ − v1 = v2 − v̄ is the half-range of the excluded cookies.
Figure 4 illustrates the demand for cookies and the resulting profit levels in the symmetric-

quadratic environment.

Figure 4: Two-Sided Symmetric Purchases
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Under the conditions of Lemma 3, the expected value of v when uninformed is equal to the

prior mean v̄, regardless of the measure of cookies bought by the firm. This is a key difference

with the one-sided case, where the number of cookies influences the marginal value of information.

In the two-sided case, the measure of signals purchased does not influence the uninformed action

q̄. Because for amount of data purchased the uninformed quantity is a constant q̄ = q∗ (v̄), the

12



marginal value of information on type v̂ is constant. A key implication is that the willingness to

pay for any cookie v is independent of the distribution of types. The resulting demand curve for

information is clearly affected by the distribution of types, but only through the quantity of cookies

demanded at any price. We will take advantage of this separation when analyzing the comparative

statics of the demand for cookies.

4 Comparative Statics of Demand

In this section, we analyze the response of the demand for information to changes in the distribution

of match values, and in the cost of advertising space. We present our results in terms of the (direct

and inverse) demand function for information, so to provide a basis to analyze for the role of

alternative market structures later on (e.g. monopoly vs. competition in data sales, exogenous vs.

endogenous price of advertising).

4.1 Information Precision

In order to explore the effects of the precision of the data provider’s information, it is convenient

to interpret v as a posterior mean. In particular, we assume the true match value is unknown to

all, but the data provider has access to an informative signal. The data provider’s signals induce

posterior means v distributed according to F (v). We may then relate the distribution F to varying

degrees of information precision.

We model increasing precision as rotations around the mean of the match-value distribution.

(This stochastic order implies mean-preserving spreads, see Johnson and Myatt (2006).) In partic-

ular let k denote the spread parameter. We then assume that E [F (v, k)] = v̄ for all k, and that

F (v, k) is increasing (decreasing) in k for all v ≤ (>) v̄. Let A (p, k) denote the solution to the

advertisers’problem (6) when cookies are distributed according to F (v, k) and the price of cookies

is p. The quantity of data demanded is then given by the measure of the set A (p, k) under the

distribution F (v, k).

Proposition 1 (Information Precision)

1. Under one sided purchases, advertisers’willingness to pay for the marginal cookie v ∈ A (p, k)

is increasing in k.

2. Under one sided purchases, the quantity of data demanded at a price p is increasing in k if

v̄ 6∈ A (p, k) .

3. Under two-sided purchases, advertisers’willingness to pay for the marginal cookie is constant

and the quantity of data demanded is strictly increasing in k.

Intuitively, an increase in the spread places more probability on the tails of the distribution.

Let us consider one-sided and two-sided purchases separately. In the case of one-sided purchases,
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the uninformed quantity level will be much closer to the extreme vL or vH , thereby raising the

willingness to pay for the marginal cookie v1 or v2. Whether this implies a higher or lower quantity

of data sold, it will depend on the level of purchases. In particular, if firms are buying cookie v̄, then

a more spread out distribution implies less data sales, for a fixed v2. Under two-sided purchases,

as k increases, more probability mass is placed on the tails, and the marginal willingness to pay

increases (so that the range of excluded cookies [v1, v2] is decreasing in k). A fortiori, the total

demand for information is higher.

We now consider an example where the support of match values varies with k. According to

the informative-signals interpretation, suppose the true types are uniformly distributed on the unit

interval, and that the monopolist observes truth-or-noise signals with precision k. The distribution

of posterior means is then uniform on [(1− k) /2, (1 + k) /2], with a higher k implying a more

spread-out distribution. In Figure 5, we plot the inverse demand curve for the case of power cost

functions m (q) = qb, with b ∈ {6/5, 2}, and k ∈ {3/4, 1} . Notice that, in the left panel, advertisers
make two-sided purchases, whereas in the second panel, advertisers purchase cookies in [v2, vH (k)].

Figure 5: Demand Curves for v ∼ U [(1− k)/2, (1 + k)/2]
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4.2 Cost of Advertising

We now turn to the role of the price of advertising space c, and we ask whether the cost of advertising

reduces the demand for data. On the one hand, a lower price of advertising space increases the

advertisers’ downstream surplus. On the other hand, it decreases the value of information (as

advertising space is cheaper for the uninformed buyers as well). Let A (p, c) denote the solution to

the advertisers’problem (6) given the prices of cookies and advertising. Under both one-sided and

two-sided purchases, we establish the following comparative statics result.

Proposition 2 (Cost of Advertising)
The advertisers’willingness to pay for the marginal cookie v ∈ A (p, c) is decreasing (increasing) in

the cost of advertising c if
d

dq

(
m′′ (q)

m′ (q)

)
≤ (>) 0.
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Combining this result with Lemma 2, we obtain suffi cient conditions on the data purchasing

strategy under which the cost of advertising has a monotone effect on the price of data.

Corollary 1 (Conflicting Interests)
If π′ (v) is strictly convex and F (v) is weakly concave, the demand for cookies is decreasing in c.

In particular, if match values are uniformly distributed, when the highest-valued cookies are

purchased by each firm the data provider benefits from a lower price of advertising space. Conversely

the demand for data is increasing in c only if low-v cookies are purchased. The intuition is that

when m′′′ (q) ≤ 0, a higher cost c reduces the “outside options” for advertisers. In other words, a

the mismatch risk is more relevant when high-v signals (which require high contact-intensity) are

not purchased.

5 Monopoly Pricing

We now turn attention to the monopoly price of cookies. We analyze the case of one-sided and

two-sided signal purchases separately. For both cases, we analyze the effect of information precision

on the price and allocation of cookies. We then turn to the role of the price of advertising space.

Recall the advertisers problem specified in (6), and suppose the conditions of Lemma 2 for

one-sided purchases apply. Thus, the inverse demand for data is given by (7) and (8). The data

provider’s profits as a function of the marginal cookies are then given by

Π (v1) = p (v1)F (v1) ,

in the case of low-value purchases, and by

Π (v2) = p (v2) (1− F (v2)) ,

in the case of high-v purchases.

The effects of information precision on the monopoly price under one-sided purchases are quite

complex. On the one hand, information precision affects advertisers’willingness to pay for the

marginal signal. On the other hand, the spread of the values distribution directly impacts the

quantity of data sold, for a fixed marginal signal. We therefore revisit the example with uniformly

distributed types over a varying support [(1− k) /2, (1 + k) /2] . For the case of power cost functions,

the spread k has a positive impact on the monopoly price, and a negative impact on the quantity

of data sold. This result does not depend on the low-value vs. high-v purchases. In Figure 6, we

show both cases by letting m (q) = qb, with b ∈ {3/2, 3}. In particular high-v cookies are purchased
when a = 3/2 (i.e. when marginal costs m′ (q) are concave).

More precise results can be obtained for the two-sided case. We maintain the assumptions of

Lemma 3, namely the symmetry of F (v) and the quadratic profits. An important feature of the

symmetric quadratic environment is that the distribution of types affects the price through the
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Figure 6: Monopoly Price and Quantity, v ∼ U [(1− k)/2, (1 + k)/2] ,m(q) = qb
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measure of cookies sold only, and not through the marginal value of information. To understand

the role of precision, we again consider distributions ordered by rotations around a constant means

v̄, with a higher value of k corresponding to a more spread out distribution.

Because of the quadratic costs assumption, the marginal willingness to pay for a set of cookies

that excludes the interval [v̄ − x, v̄ + x] is given by p (x) = x2/4c. Using the symmetry assumption,

the data provider’s profits may be written as

Π (c) = max
x

[
F (v̄ − x, k)

x2

2c

]
. (10)

Let x∗ (c, k) denote the solution to problem (10).

Proposition 3 (Rotation Order, Two-Sided Purchases)

1. If the distribution F (v, k) is log-submodular in v and k, the monopoly price of cookies is

increasing in k.

2. If F (v, k) is log-supermodular, the price of cookies is decreasing and the quantity of data sold

is increasing in k.

3. If x∗ (c, k) is low enough, the monopoly price of cookies is increasing in k.

Part (3.) follows from the observation that the rotation order implies that F (v, k) is locally

log-submodular close to the mean. Thus, if the price is ever low enough that the monopolist sells

nearly every cookie (possibly when the distribution approaches a mass point at v̄), then the price

is increasing in the information precision. Clearly, when the monopoly price is decreasing in k, we

know that a fortiori the quantity sold is increasing, but not viceversa.

Under our symmetry assumption, some examples of log-submodular distribution include: the

symmetric Beta distribution with parameter 1/k; the truncated normal distribution; and several

“modified triangular”distributions, such as the two-sided (and truncated) exponential and Pareto

distributions centered around 1/2.
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The normal distribution illustrates a sharper characterization that applies under a stronger sto-

chastic ordering. Let F (v, k) be ordered by increasing variance, i.e. F (v, k) , G ((v − v̄) /σ (k))

with σ′ (k) > 0. The following result then follows from the observation that ∂F (v, k) /∂k =

−σ (k)−1 ∂F (v, k) /∂v in the proof of Proposition 3.

Corollary 2 (Variance Order)
If F (v, k) is ordered by increasing variance, the monopoly price of cookies is increasing in k if G (·)
is log-concave.

Notice that the log-submodularity requirement differs from the standard result for comparative

statics of the monopoly price. In particular, it applies to our data sales model under two-sided

purchases only. This is due to both the independence of p (v) from k, and to the quadratic costs,

which imply the argument of F (·) in (27) is linear in x.
In Figure 7, we consider the monopoly prices and quantities as a function of the spread parameter

k. In particular, we consider a symmetric Beta distribution with parameters a = b = 1/k; a

truncated Laplace distribution with parameter 1/k; and a modified triangular distribution on the

unit interval.5 In all three cases, we can interpret the spread of the distribution as the precision

of the data provider’s information when the true underlying match value is binary v ∈ {0, 1}. The
Beta and exponential distributions are log-submodular for all k > 0 and v, while the modified

triangular is log-submodular if v > 1/4k. Notice that the monopoly quantity responds differently

Figure 7: Monopoly Price and Quantity, Rotation-Ordered F (v, k)
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from the price, and it may increase or decrease even if the price is increasing.

5The latter distribution has the following density,

f (v, k) =

(
1
k
− 2v

k2
+ 1

v2

)
e
−
(
1
k
− 2v
k2
+ 1
v2

)
B (k) for v ∈

[
0, 1

2

]
,(

1
k
− 2(1−v)

k2
+ 1

(1−v)2

)
e
−
(
1
k
− 2(1−v)

k2
+ 1
(1−v)2

)
B (k) for v ∈

[
1
2
, 1
]
,

where B (k) is a constant that ensures f (v, k) integrates to one.
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We conclude this section by analyzing how the price of advertising affects the monopoly price

of data.

Proposition 4 (Cost of Advertising)

1. Under one-sided purchases with uniformly distributed match values, the monopoly price is

decreasing (increasing) in the cost of advertising if

d

dq

(
m′′ (q)

m′ (q)

)
≤ (>) 0.

2. Under two-sided purchases, the monopoly price is inversely proportional to the cost of adver-

tising.

Note that part (1.) of the last result requires that the composite function F (v∗ (p, c)) is log-

submodular. However, we can show (based on Proposition 2) that the cutoff function v∗ (p, c) is

strictly submodular. Thus, the power transformation preserves the log-submodularity of the cutoff

function.

6 Equilibrium Allocation of Cookies

The developing markets for online data differ from traditional (offl ine) sales of consumer-level

information along several dimensions. Perhaps the main distinguishing feature is that both sides of

an advertising market can gain by acquiring consumer-level data. Thus, a data provider can sell to

both advertisers and publishers, and depending on the technology and the contracting environment,

it may choose which side to serve. In this section, we discuss the revenue-maximizing allocation

of cookies by introducing the possibility for both sides of the market to buy data. An important

distinction to be made is the one between horizontal match values (as in the rest of the paper),

and vertical match values, where all advertisers have the same preferences over consumers.

Regardless of the nature of buyer heterogeneity, our first step consists of characterizing the

publisher’s demand for data. This requires analyzing the effect of cookie sales on the total demand

for advertising space. If an advertiser wants to reach a user with intensity q, then it will have to

spend cm (q) to purchase the amount of space necessary for the contact. Now fix a set of excluded

cookies V \A = [v1, v2]. Consider then the total amount of space demanded by the advertisers

M (A) =

∫ v1

vL

m (q∗ (v)) dF (v) +

∫ v2

v1

m (q∗ (E [v 6∈ A])) dF (v) +

∫ vH

v2

m (q∗ (v)) dF (v) .

We first ask whether the total demand for advertising is increasing in v1 and decreasing in v2, i.e.

increasing (in a specific sense) in the measure of cookies sold to the advertisers. To understand

the publisher’s trade-off, consider one-sided purchases of high-v prospects. As v2 decreases, the

publisher is substituting m (q̄ (v2)) with m (q (v2)), which is higher. At the same time, the average
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type below v2 is decreasing, and so is the quantity of advertising sold for prospects v ∈ [0, v2]. Figure

8 shows the demand for advertising m (q (v)) under one-sided purchases for a power cost function,

and a logarithmic cost function. Not surprisingly, the publisher’s preference for information is

related to the convexity of the demand for advertising space.

Figure 8: Publisher Revenues under different cost functions
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Lemma 4 (Demand for Advertising)

1. The total demand for advertising space is increasing in v1 and decreasing in v2 if the complete-

information advertising intensity m (q∗ (v)) is convex in v. (The opposite is true if m (q∗ (v))

is concave.)

2. The complete information intensity m (q∗ (v)) is convex (concave) in v if

m′′ (q)

m′ (q)
is decreasing (increasing) in q.

When the demand for advertising is convex in v, the websites prefer to disclose horizontal-

value information. In other words, the publisher benefits from an indirect sale of information. In

fact, information about users is incorporated in the advertising product, which will sell at a higher

price (here, in higher volume). Conversely, when the demand for advertising space is concave in v,

publishers have a negative willingness to pay for the information. An example of such a cost function

is derived from the Butters (1977) exponential technology, which leads to m (q) = − ln (1− q).

6.1 Horizontal Match Values

In this subsection, we maintain the assumption of horizontal heterogeneity among consumers. We

consider technologies with m (q∗ (v)) convex, and characterize the price of information that the
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data provider can charge to either side of the advertising market. A key question concerns which

cookies will the publisher buy, if it decides to purchase information. In our horizontal match

values framework, all cookies are symmetric from the point of view of the publisher. The following

Lemma provides conditions under which it is immediate to translate the publisher’s preference for

information into marginal willingness to pay.

Lemma 5 (Constant Returns)
Assume the publisher can adopt randomized disclosure only. The publisher’s revenue is linear in

the measure of cookies bought.

Under the anonymous cookie purchases, assume the advertisers buy a fixed set of cookies A0 .

The publisher’s marginal willingness to pay for data is constant, and given by

pPUB = c (M (V )−M (A0)) .

The data provider’s preferred sales strategy depends, among other aspect, on the specific rules

game between publishers and advertisers. Consider the following scenario: suppose the data

provider sets a price p, and advertisers and the publisher simultaneously demand cookies. In

the equilibrium of the game that most favors advertisers, the publisher will buy all the data, and

release it to the advertisers. In this case, A0 = ∅. The following picture compares the advertisers’
and the publisher’s marginal willingness to pay for uniformly distributed values and power cost

functions m (q) = qb/b, and b = 3/2.

Figure 9: Publisher and Advertiser willingness to pay
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The resulting profit levels are always higher if the data provider sets p = pPUB and advertisers

do not buy information. Suppose instead that the data provider sets a price p0 but cannot commit

not to modify it after the publisher has purchased data. Then the publisher’s willingness to pay is

computed with reference point A0 = A (c, p∗) . The next figure compares the profits from selling to

advertisers with those from selling to the publisher under each alternative scenario.
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Figure 10: Data Provider Revenue by Target Buyer
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6.2 Vertical Match Values

In this subsection, we assume that each consumer i generates the same match value with all firms

j, and that match values v are distributed according to F (v). We maintain the linear pricing

assumption, and ask whether the data provider will sell cookies to both sides, and if so, which will

be the equilibrium allocation of data.6 The main difference with the horizontal model is that the

publisher can focus on which users (i.e. which match values v) to provide information about.

Furthermore, suppose the publisher releases whatever information it acquires to the advertisers.

If the publisher buys cookies v ∈ P ⊂ V and the advertisers buy cookies v ∈ A ⊂ V , the publisher’s
payoff is given by∫

A∪P
m (q∗ (v)) dF (v) +

∫
V \(A∪P )

m (q∗ (E [v 6∈ A ∪ P ])) dF (v)−
∫
P
pdF (v) .

Intuitively, from the point of view of the advertisers, any cookie purchased by the publisher is

equivalent to a “free signal.” From the point of view of the publisher, any signal bought by the

advertisers shifts the demand for advertising space from incomplete to its complete-information

level.

In what follows, we assume m (v) is convex, and fix the unit price of advertising space c. We

consider, a game with simultaneous data purchases by the advertisers and the publisher. It is

immediate to see that equilibrium behavior imposes several restrictions on the endogenous data

allocation. In particular, (a) no cookie v is purchased by both parties; and (b) for any p > 0, a

positive measure of cookies is not purchased. Furthermore, as in Lemma 2, the third derivative of

the publisher’s complete-information profit function (in this case m∗ (q (v))) determines the nature

of the equilibrium purchases.

Proposition 5 (Publisher Demand)

6The linear pricing assumption is particularly important here, as it amounts to assuming that the publisher has a
homogeneous group of advertisers (i.e. pure common values), but still the data provider does not price discriminate.
In Section 9, we analyze nonlinear pricing in both the horizontal and the vertical model.
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Let v be uniformly distributed, and assume advertisers purchase a cookies in a single interval A.

1. The publisher purchases the highest (lowest) cookies v ∈ V \ A if r (v) , m (q∗ (v)) satisfies

r′′′ (v) ≥ (<) 0.

2. The function r (v) satisfies r′′′ (v) ≥ 0 if and only if

d

dq

(
m′′ (q)2 −m′ (q)m′′′ (q)

m′′ (q)3

)
≥ 0. (11)

3. Let the cost function m (q) = qb, with b > 1. Then

r′′′ (v) > 0 ⇐⇒ m′′′ (q) < 0 ⇐⇒ b < 2. (12)

The condition (11) is hard to interpret, but (12) offers an easier example. With power cost

functions, revenues r (v) have a positive third derivative if and only if q∗ (v) is convex, which

corresponds to π′′′ (v) ≥ 0 (see Lemma 2). Thus, the advertisers and the publisher have the same

order of preference for information about users of different value.

Furthermore, under power cost functions, the value of information for the advertisers and for

the publisher can be ranked. In particular, if b < 2 so that high-v cookies are purchased, the

publisher has a higher value of information. Conversely, for b > 2, low-v cookies are purchased

and advertisers have a stronger preference for information. Not surprisingly, a convex combination

of cost functions yields an intermediate result, in which the marginal willingness to pay is not

uniformly ranked. Figure 11 displays the marginal value of information (for one-sided purchases)

in three exemplary cases when values v are distributed uniformly and c = 1.

Figure 11: Demand Curve by Target Buyer
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As we noted above, for a given price p the split of cookies between advertisers and publisher

is arbitrary (subject to the restrictions in the results above). In particular, for low prices p, the

data provider may be able to sell to both low prices of cookies. For example, in the left panel of

Figure 11, the advertisers and the publisher can split the purchases of an interval of high-v cookies.
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There clearly exists multiple solutions, subject to the constraint that advertisers will not purchase

cookies below a certain threshold. While the sharing of data is indeterminate, it is clear that the

advertisers and the publisher are the price-setters for b > 2 and b < 2, respectively.

To conclude, when consumers’match values are homogeneous across firms, the data provider’s

demand curve for cookies may be driven by the publisher’s as well as by the advertisers’willingness

to pay. The following is perhaps an intuitive equilibrium data allocation: when one-sided (“top”)

purchases are optimal, advertisers buying the very best cookies, and the publisher supplements

their data buys. The price is determined by the publisher’s demand. Conversely, when “bottom”

purchases are optimal, the publisher buys the lowest-value cookies, and the advertisers purchase

additional higher-value ones. The price is in this case determined by the advertisers’demand.

7 Advertising and Cookie Markets

We now examine the interaction of markets for data and for advertising. We focus, in particular,

on the effects of market-clearing prices for advertising space on the monopoly price of cookies, and

on the role of potential fragmentation in the data market.

7.1 Endogenous Cost of Advertising

We examine whether the data provider has an incentive to lower the price of advertising space

c. The first step consists of asking whether the cost of advertising reduces the demand for data.

Conditions under which this occurs were established in Proposition 2. The next step consists of ask

whether cookie sales increase or decrease the demand for advertising space. But this was already

established in Lemma 4. Finally, we endogenize the price of advertising space c by assuming a fixed

supply of space M for each user i. This may correspond to a limit on the actual physical space on

web pages that the user can access, or a limit on the user’s attention span. The cost of advertising

c is determined through a simple market clearing condition, which we interpret as a proxy for a

uniform-price auction for web space. Thus, an equilibrium is given by an allocation of advertising

space and cookies such that firms maximize profits and advertising markets clear.

The market-clearing condition is given by

M =

∫
A
m (q∗ (v)) dF (v) +

∫
V \A

m (q∗ (E [v 6∈ A])) dF (v) .

Thus, competing advertisers’demands for advertising impose a pecuniary externality through the

unit price of advertising space. We apply our earlier results to establish whether the data provider

can profitably reduce or increase congestion in the advertising market so to influence the demand

for cookies through the equilibrium price of advertising space. The following result follows from

Propositions 2 and Lemma 4.

Corollary 3 (Demand for Cookies and Advertising)
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The demand for advertising space is increasing (decreasing) in the quantity of cookies sold if the

demand for cookies is decreasing (increasing) in the cost of advertising.

We can compare cookie prices under exogenous vs. endogenous price of advertising space.

Combining our previous results, we show that, if the cost of advertising is determined through

market clearing, the data provider profitably increases the price of cookies, compared to the case

of an exogenous c. In fact, the data provider wishes to reduce congestion when ∂p/∂c < 0 and to

create congestion when ∂p/∂c > 0, because in that case c is decreasing in amount of information

sold. We summarize our finding in the next proposition.

Proposition 6 (Endogenous Cost of Advertising)

1. Let c denote the cost of advertising space, p (c) the monopoly price given the (exogenous) cost

c, and M (c) the resulting total demand of advertising. Let p (M) denote the monopoly price

with endogenous c when the supply of advertising is given by M . Then it holds that

p (M (c)) > p (c) .

2. Conversely, let c (M) denote the equilibrium price of advertising space when total supply is

given by M. Then it holds that

p (M) > p (c (M)) .

7.2 Concentration in the Market for Data

In this last section, we examine the role of individual users potentially selling their data (e.g.

through enliken.com), and of the Data Exchange (e.g. promoted by Bluekai). Formally, we consider

a continuum of data sellers, and we assume that each one has an exclusive over one consumer. Each

seller sets the price of the corresponding cookie.

We look for a symmetric pricing equilibrium in which advertisers buy high-v cookies. Each

seller chooses the marginal user v2 to maximize profits given the advertisers’purchasing strategy,

which is summarized by v∗2. Thus, a symmetric equilibrium must solve the following problem:

v∗2 = arg max
v

[p (v, v∗2) (1− F (v))] ,

where

p (v, x) = π (v)− π (v, q∗ (E [v < x]))

represents the marginal willingness to pay, given advertisers’purchasing strategies.

The key difference with the monopoly problem lies in the uninformed intensity q̄ (v∗2) , which

cannot be influenced by an individual seller’s pricing decision. When we contrast the equilibrium

p (v∗2) with the case of a data monopoly, we obtain the following comparison.
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Proposition 7 (Equilibrium under Exclusivity)
The symmetric equilibrium price of cookies under exclusive sales is higher than the monopoly price

with a single data provider.

The intuition for this result lies in a positive externality across cookie sales. When the monopo-

list sells the marginal cookie, this increases firms’willingness to pay for all others. For example, with

high-v purchases, the more cookies bought, the lower the uninformed advertising level. Conversely,

for low-value purchases, the higher the mismatch risk.

Of course, welfare implications of this result would need to take into account effects on infor-

mation acquisition and user privacy. It is however, suggestive of the revenue implications of data

exchanges that promote integration of 1st- and 3rd-party data.

8 Binary Advertising Levels

With the goal of studying nonlinear pricing for data, we consider a benchmark model with binary

choice of advertising levels. Contact intensities are restricted to q ∈ {0, 1}. Given match values
v ∈ [0, 1], the complete-information expected profits are given by

EF [π (v)] =

∫ 1

c
(v − c) dF (v) .

Likewise, the incomplete-information profits are given by

π0 = max {0,EF [v]− c} .

The minimal amount of information that induces the complete-information profits is a binary

signal indicating whether the match value is above or below the cost of advertising space c. Intu-

itively, advertisers can either acquire information about the most valuable users, and exclude all

others, or acquire information about the least valuable ones, and contact all others.

We initially focus on linear prices for cookies, and characterize the advertisers’ demand for

signals.

Lemma 6 (Binary Action —Demand for Information)

1. For all c and p there exists a threshold type v̂ such that advertisers choose q (v) = 1 for all

v ≥ v̂ and q (v) = 0 for all v < v̂. The set of purchased cookies A (c, p) is given by either [v̂, 1]

or [0, v̂].

2. The marginal willingness to pay p (v̂, c) is increasing (decreasing) in c if A (c, p) = [0, v̂] or

A (c, p) = [v̂, 1], respectively.

Consider the willingness to pay for the marginal cookie. If advertisers buy “from the top,”

they select a cutoff v̂ such that v̂ − c = p. Conversely, if advertisers buy “from the bottom,” the
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threshold v̂ is given by v̂ = c − p. Thus, the data-buying strategy determines the comparative
statics of demand with respect to the cost of advertising. We now derive conditions under which

advertisers will purchase the high- or the low-v cookies. In the former case, the advertisers’profits

are given by

π+ (v̂) =

∫ 1

c+p
(v − c− p) dF (v) .

In the latter case, profits are given by

π− (v̂) =

∫ 1

c−p
(v − c) dF (v)− pF (c− p) .

In general, the advertisers’data-buying strategy is a function of the price of information, of

advertising space and the distribution of match values. We relate the advertisers’demand to the

two parameters c and p, and to the properties of the match-value distribution in the following

result. In particular, we focus on distributions with a monotone density function f (v) on [0, 1], so

that the difference between the median and v = 1/2 has an unambiguous sign.

Proposition 8 (Data-buying Policy)
Let vM denote the median of F (v).

1. If f (v) is decreasing, high- (low-) v cookies are purchased for p ≤ (>) p̃D (c).

The threshold p̃D (c) is increasing, with p̃D (vM ) = 0 and p̃D (vD) = vD, where vD ∈ [vM , 1/2]

is the positive root of ∫ 2x

0
F (v) dv = x.

2. If f (v) is increasing, high- (low-) v cookies are purchased for p ≥ (<) p̃I (c).

The threshold p̃I (c) is decreasing, with p̃I (vM ) = 0 and p̃I (vI) +vI = 1, where vI ∈ [1/2, vM ]

is the positive root of ∫ 1

2x−1
F (v) dv = 1− x.

Figure 12 displays the advertisers’demand for signals for the case of increasing and decreasing

density, respectively.

Evidently, when the cost of ads c is very high (low), advertisers purchase high- (low-) value

cookies. While Proposition 8 provides suffi cient conditions in terms of the distribution of values,

this result should hold more generally. Intuitively, when c is high, only a small number of users are

actually profitable. For any p, it is then optimal for advertisers to buy a small number of cookies

and to contact those very high-value users only. The opposite intuition applies when c is very low:

almost all users are profitable, advertisers buy a few low-v cookies, and exclude the corresponding

users.

The optimal data-buying policy as a function of the price of cookies p is more involved. Our

results suggest that, for low values of p, the skewness of the distribution is driving the advertisers’

26



Figure 12: Demand for Signals
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choice. When p is low, the advertisers’choice is dictated by the comparison of F (c) and 1− F (c)

(corresponding to the measures of the largest low- and high- value sets that can be demanded). As p

increases, the set of cookies demanded shrinks. It may then become optimal to switch data-buying

policy. For example, in the case of decreasing density, for low values of p, advertisers buy almost all

cookies in [c, 1]. As the price increases, the high-v purchases strategy induces them to give up the

least profitable users. These users may, however, be very numerous. If the cost c is suffi ciently low,

it is optimal to switch to a low-values purchases strategy. This entails wasting some messages on

users with v < c, but ensures that advertisers are able to reach more consumers with intermediate

values instead.

Having established the properties of the demand function, we now turn to monopoly pricing

of cookies. We focus on the uniform distribution, which allows for a simpler characterization of

demand. The following result is a direct consequence of Propositions 8 and Lemma 6 (in Appendix).

Corollary 4 (Uniform Distribution)
If F (v) = v, advertisers buy high- (low-) v cookies if c > (<) 1/2.More generally, if f ′ (v) (c− 1/2) ≤
0 the data-buying policy is independent of p.

Under the uniform, the profit-maximizing price of cookies p∗ (c) is then given by

p∗ (c) =
1

2
min {c, 1− c} .

For more general distributions, the data-buying policy induced by the monopolist will be more

complicated. In fact, the price of cookies need not be differentiable, or even continuous in c.

Jumps may occur when the monopolist switches from inducing one data-buying policy to another.

Typically, this occurs when moving from the unconstrained-optimal price under one strategy to

constrained-optimal price that induces the other strategy. Figure 13 shows the monopoly price for
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the two separate cases of decreasing and increasing densities. In both cases, the monopolist induces

high-v purchases for c above a threshold.

Figure 13: Monopoly Price and Cookies Sold

Sell high­v
cookies

Sell low­v
cookies

0.2 0.4 0.6 0.8 1.0 c

0.05

0.10

0.15

0.20

0.25

0.30

p

F (v) =
√
v

Sell high­v
cookies

Sell low­v
cookies

0.2 0.4 0.6 0.8 1.0 c

0.05

0.10

0.15

0.20

p

F (v) = v2

9 Nonlinear Pricing

The solution to the monopolist’s problem is indeed much simpler under nonlinear pricing. In this

section, we consider a binary decision q ∈ {0, 1} and match values v distributed on the interval
[0, 1]. In addition, we introduce a private-information component to advertisers’willingness to pay

for contacting users. We first explore the data provider’s ability to screen advertisers by offering

differently informative partitions of users, and pricing the amount of information in a nonlinear

way. We then investigate the optimal nonlinear pricing of arbitrary information structures, and we

show that partitional, revealing mechanisms are optimal in the binary action case.

With heterogeneous advertisers, the net value of a match is given by

max {θv − c, 0} .

Thus for advertising to generate value at all, we have θ > c. The marginal willingness to pay θ

is private information of the advertisers. We assume that θ is distributed in the population of

advertisers according to G (θ) .

9.1 Binary Partitions

Under binary actions, the effi cient disclosure rule can be induced by a binary partition given θ with

cutoff

x (θ) =
c

θ
. (13)
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An equivalent information structure discloses the value v perfectly and without noise if and only if

v ≥ x (θ) . (14)

In other words, the data provider can attain the effi cient allocation of information through a

disclosure policy based on cookies. Under this policy, the advertisers contact all users they receive

a signal about, and do not contact “unknown”users.

Regardless of its implementation, the expected value of the effi cient partition is therefore

w (θ) =

∫ 1

c/θ
(θv − c) dF (v) .

9.1.1 Optimal Disclosure

Now consider an arbitrary binary disclosure rule with cutoff x. The value of this information

structure is given by

w (θ, x) =

∫ 1

x
(θv − c) dF (v) .

We therefore have
∂w (θ, x)

∂x
= − (θx− c) f (x) , (15)

with
∂w (θ, x)

∂θ
=

∫ 1

x
vdF (v)

and hence
∂2w (θ, x)

∂θ∂x
= −xf (x) . (16)

Because of this submodularity property, higher types θ should receive lower cut-offs x.

The optimal information allocation and pricing can then be solved via the virtual utility, and

is given by:
∂w (θ, x)

∂x
=

1−G (θ)

g (θ)

∂2w (θ, x)

∂x∂θ
,

and after using (15) and (16) we obtain

x (θ) =
c

θ − 1−G(θ)
g(θ)

. (17)

Perhaps the surprising element is that the distributional information about the match values does

not appear in the optimal information allocation. This results from linearity in all types θ’s utility

in the number of users contacts, with differences in willingness to pay originating from the match

values v only. The next result follows immediately from the derivation of the optimal threshold

(17).

Lemma 7 (Cookie Quantity)
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The numbers of cookies sold, q (θ) = 1− x (θ) is increasing in θ if the virtual utility

θ − 1−G (θ)

g (θ)

is increasing in θ.

9.1.2 Optimal Pricing

We can then derive the optimal pricing rule. The gross utility for the buyer is:

w (θ, x (θ)) = θ

∫ 1

x(θ)
vdF (v)− c

∫ 1

x(θ)
dF (v) (18)

and the indirect utility is then given by:

W (θ) =

∫ θ

θ

∂w
(
θ′, x

(
θ′
))

∂θ′
dθ′ =

∫ θ

θ

∫ 1

x(θ′)
vdF (v) dθ′, (19)

and the associated transfer is

t (θ) = w (θ, x (θ))−W (θ) .

On the one hand, we could insert x (θ) and get a more explicit expression, but one involving

derivatives of the virtual utility function which might not be too helpful. On the other hand, we

would like to make a number of statements about the transfers.

Lemma 8 (Transfers and Quantities)

1. The total payment t (θ) is increasing in θ (and hence the number of cookies sold);

2. the cookie price p (x) is increasing in x and can decentralize the direct optimal mechanism if

(1−G (θ)) /g (θ) is decreasing.

Thus, if the we maintain the interpretation of an idiosyncratic distribution (i.e. of horizontally

differentiated advertisers), the optimal pricing is simply a nonlinear quantity pricing. In particular,

the data provider can decentralize the optimal mechanism by allowing advertisers to access a

given portion of the database with volume discounts for those who demand a larger amount of

cookies. If we extend the interpretation to a common value distribution (and hence with vertical

differentiation), then we still have a cookie pricing scheme. In this scheme, the identity of the

cookies sold matters, and the mechanism features a decreasing price for less valuable cookies.

Furthermore, the most valuable cookies will be sold to all participating advertisers (i.e. those with

suffi ciently large virtual valuations), while intermediate cookies will feature a level of exclusivity

which is decreasing in v.

Figure 14 shows the link between willingness to pay θ and the cut-off x (θ) for the case of the

uniform distribution and c = 1/2.
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Figure 14: Optimal Cutoff Policy
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Figure 15 turns to the quantity of data sold, and shows the total pricing function T (Q) and

the marginal price T ′ (Q), with

Q (θ) = 1− x (θ) .

In particular, we can interpret the marginal price also as the price of the additional cookie.

Figure 15: Total and Marginal Price of Data
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9.2 General Information Structures

9.2.1 Signals and Values

Each advertiser i has a compact set Vi = [0, 1] of possible valuations for the contact with the

customer, where a generic element is denoted by vi ∈ Vi. The valuation vi is independently

distributed with prior distribution function G (vi), and the associated density function g (vi) is

positive on Vi.

The signal space is denoted by Si ⊆ [0, 1]. The space Si can either be countable, finite or infinite,

or uncountable. Let (Vi × Si,B (Vi × Si)) be a measurable space, where B (Vi × Si) is the class of
Borel sets of V ×S. An information structure for advertiser i is given by a pair Si , 〈Si, Fi (vi, si)〉,
where Si is the space of signal realizations and Fi (vi, si) is a joint probability distribution over the

space of valuations Vi and the space of signals Si. We refer to this class of information structures
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as (Borel) measurable information structures. The joint probability distribution is defined in the

usual way by

Fi (vi, si) , Pr (ṽi ≤ vi, s̃i ≤ si) .

The marginal distributions of Fi (vi, si) are denoted with minor abuse of notation by Fi (vi) and

Fi (si) respectively. For Fi (vi, si) to be part of an information structure requires the marginal

distribution with respect to vi to be equal to the prior distribution over vi. The conditional

distribution functions derived from the joint distribution function are defined in the usual way:

Fi (vi |si ) ,
∫ vi
0 dFi (·, si)∫ 1
0 dFi (·, si)

,

and similarly,

Fi (si |vi ) ,
∫ si
0 dFi (vi, ·)∫ 1
0 dFi (vi, ·)

.

The data provider can choose an arbitrary information structure Si for every advertiser i subject
only to the restriction that the marginal distribution equals the prior distribution of vi. The cost

of every information structure is identical and set equal to zero. The choice of Si is common
knowledge. At the interim stage every agent observes privately a signal si rather than her true

match value vi of the object. Given the signal si and the information structure Si each advertiser
forms an estimate about her true match value. The expected value of vi conditional on observing

si is defined and given by

wi(si) , E [vi |si ] =

∫ 1

0
vidFi (vi |si ) .

Every information structure Si generates a distribution function Gi (wi) over posterior expectations

given by

Gi (wi) =

∫
{si:wi(si)≤wi}

dFi (si) .

We denote byWi the support of the distribution function Gi (·). Observe that the prior distribution
Fi (·) and the posterior distribution over expected values Gi (·) need not coincide. It is helpful to
illustrate some specific information structures.

The information structure Si yields perfect information if Fi (vi) = Gi (vi) for all vi ∈ Vi. In
this case, the conditional distribution F (si |vi ) has to satisfy

Fi (si |vi ) =

{
0 if si < s (vi) ,

1 if si ≥ s (vi) ,
(20)

where s (vi) is an invertible function.

The information structure Si is said to be positively revealing if Fi (vi) = Gi (vi) for all vi ≥
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v̂i ∈ Vi, and with the conditional expectation given by ŵi = E [vi |vi ≤ v̂i ]

Gi (v) =


0 if 0 < v ≤ ŵi;

Fi (v̂i) if ŵi ≤ v ≤ v̂i;
Fi (v) if v̂i ≤ v ≤ 1.

(21)

An information structure Si which satisfies (20) without necessarily satisfying the invertibility
condition is called partitional. An information structure is called discrete if Si is countable and

finite if Si is finite.

After the choice of the information structures Si by the auctioneer, the induced distribution
of the agent’s (expected) valuations is given by Gi (wi) rather than Fi (vi). The signal si and the

corresponding expected valuation wi (si) remain private signals for every agent i and the auctioneer

still has to elicit information by respecting the truthtelling conditions.

9.2.2 Revelation Mechanism

The data provider selects the information structures of the advertisers and a revelation mechanism.

The objective of the data provider is to maximize his expected revenue subject to the interim

participation and interim incentive constraints of the advertiser. The data provider can offer a

menu of posterior expectations G (w |θ ) at a price t (θ). In an incentive compatible mechanism the

value function of an advertiser with a willingness to pay θ is given by

U (θ) ,
∫
w
{max {θw − c, 0} dG (w |θ )} − t (θ) (22)

and the interim incentive constraint requires that∫
w
{max {θw − c, 0} dG (w |θ )} − t (θ) ≥

∫
w

{
max {θw − c, 0} dG

(
w
∣∣θ′ )}− t (θ′) (23)

and the interim participation constraint requires that

U (θ) ≥ 0.

9.2.3 Revenue Maximizing Mechanism

For convenience, we shall restrict attention to a model with finite values and finite signals. We

briefly discuss the extension to a continuum of types, values, and signal at the end. We present the

finite model here as it allows to avoid additional qualification such as “almost surely” that arise

in a model with a continuum of types, values or signals. A mechanism is then a transfer payment

t (θ) and distribution Hθ : V → ∆ (W ) from values into expectations.

We denote by W (θ) the set of posterior expectations under distribution Hθ:

W (θ) , {w ∈W |hθ (w) > 0}

33



We say that W (θ) has binary support, in this case denoted by B (θ), if it contains only two

elements:

B (θ) = {w (θ) , w (θ)} (24)

and one of them leads to a contact, and the other one does not lead to contact:

θw (θ)− c < 0, θw (θ)− c ≥ 0.

Lemma 9 (Binary Mechanism)
Every optimal revenue mechanism can be implemented by a binary mechanism.

By combining the posterior values into those with positive and those with negative value relative

to the type θ of the agent, we do not change the value of the allocation for the agent. But, since

the bundling/combination is performed with respect to the true type, it lowers the option value for

all types other than the true type, because the binary mechanism forces them to take a constant

action where before they might have chosen contingent actions. Thus, restricting the set of posterior

realization only tightens the incentive constraints, and can only (weakly) improve the revenues for

the principal.

Finally, we can show that every revenue-optimal mechanism can be implemented by a positively

revealing mechanism. Therefore, the data provider can maximize revenues by revealing cookies

above the optimal threshold in (17) and charging the corresponding prices. In our horizontal-

differentiation interpretation, the optimal mechanism can also be decentralized by a nonlinear

tariff for access to portions of the database.

10 Concluding Remarks

We now discuss some key directions for extending the current analysis.

Pricing General Information Structures Within the context of selling data with exoge-
nous precision, we can extend our model to incorporate more general information structures. The

question of how to then price them is closely related to the optimal bundling and nonlinear pricing.

For example, the data provider may offer coarse (partitional) and potentially asymmetric informa-

tion structures. These structures can be part of a profit-maximizing data sales policy if firms have

heterogeneous preferences for precision. For example, with horizontal match values, firms may have

prior information of differing precision, or different spreads in the distribution of match values.

Endogenous Precision We have so far treated the precision of the information available to
the data provider as exogenous. However, by introducing a positive marginal cost for acquiring

information about users, we can endogenize the level of precision of the data for sale. This en-

dogenous precision level depends on the downstream mode of competition and on the direct and

indirect externalities among advertisers. Both these factors affect the surplus that firms can create

at the advertising stage, and hence determine how much of it the data provider can appropriate by

selling information.
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The issue of information acquisition clearly has important implications for user privacy online.

We address these issues specifically in ongoing work, in which we focus on the dynamics of firm

learning and pricing. The classic insights of dynamic pricing are now affected by the risk that the

user will “clear her cookies”and reset the firm’s learning process.

Heterogeneous Publishers We have explored the possibility of publishers purchasing infor-
mation as a deviation from a candidate equilibrium in which data is sold to advertisers only. We

can extend our analysis to a large number of small (homogeneous or heterogeneous) websites who

sell space and buy information. This introduces two important themes: first, each website may

wish to refine or garble its information depending on the thickness of advertiser demand for its

space; and second, advertisers’demand for information is now driven by the opportunity of using

the same information bit across several sites (by tracking the same consumers). Therefore, even

if advertisers’demands for space may be separable across sites, the composition of each site will

interact in determining the demand for data.

A related issue is the two-sided nature of data transactions. We seek to characterize both

the equilibrium (bid) price charged to the publishers by the data provider, and the sales (ask)

price charged by the publisher for the flow of information going to the data provider. A natural

equilibrium condition is that the data provider pays for the marginal value of the information

acquired from each website.

Appendix

Proof of Lemma 1. Suppose towards a contradiction that the set of excluded cookies V \A is not
an interval. Let q̄ denote the match intensity demanded by the firm for consumers v 6∈ A. Equation
(5) establishes that q̄ is the optimal match intensity for the average type v̄A = E [v | v 6∈ A]. Suppose

v̄A ∈ A. Now consider two consumers with v′′ > v′ and q∗(v′′) > q∗ (v′) > q̄ such that the firm

buys cookie v′ but not v′′. If V \ A is not an interval, either such a pair exists, or there exists a

pair with v′′ < v′ and q∗(v′′) < q∗ (v′) < q̄ such that the firm buys cookie v′ but not v′′. Consider

the former case, and compute the change in profits obtained by swapping cookies, i.e. purchasing

(equal numbers of) cookies v′′ instead of cookies v′. Define the difference between complete and

incomplete-information profits as

∆ (v, q̄) = v (q∗ (v)− q̄)− c (m (q∗ (v))−m (q̄)) ,

and notice that ∆v (v, q̄) = (q∗ (v)− q̄) . Therefore q∗(v′′) > q∗ (v′) > q̄ implies ∆ (v′′, q̄) > ∆ (v′, q̄).

Because the firm gains ∆ (v′′, q̄) and loses ∆ (v′, q̄), it follows that the swap strictly improves

profits. An identical argument applies to the case of q∗(v′′) < q∗ (v′) < q̄. Finally, if v̄A 6∈ A, then
a profitable swap involves not purchasing v̄A and buying any other cookie instead. �

Proof of Lemma 2. Consider the case of the uniform distribution, so that F (v) is linear. The
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following are necessary conditions for exclusion of an interior interval [v1, v2] . Let

v0 :=
v1 + v2

2
,

denote the mean excluded type, so that q̄ = q∗ (v0), and by the envelope theorem q̄ = π′ (v0) . The

value of the marginal signal v is then given by

π (v)−
(
π (v0) + (v − v0)π′ (v0)

)
,

which is positive and convex because π (v) is convex. Now let the set of excluded cookies have

measure 2ε. Optimality requires that

p = π (v0 + ε)−
(
π (v0) + επ′ (v0)

)
= π (v0 − ε)−

(
π (v0)− επ′ (v0)

)
,

or

π (v0 + ε)− π (v0 − ε)− 2επ′ (v0) =

∫ v0+ε

v0−ε

(
π′ (v)− π′ (v0)

)
dv = 0.

The last expression is positive if π′ (v) is convex and negative if π′ (v) is concave. Suppose π′ (v)

is convex. In a candidate interior solution, if the firm’s marginal willingness to pay for the lowest

excluded cookie equals the price, then it strictly prefers acquiring the highest excluded type. This

rules out exclusion of an interior interval, and leaves exclusion of [vL, v2] as the only candidate

solution. The opposite result holds when π′ (v) is concave. In addition, if the density of types f (v)

is strictly monotone, then v0 6= (v1 + v2) /2. In particular, v0 ≤ (v1 + v2) /2 if F (v) is concave.

This increases the value of acquiring the highest excluded prospect even further, reinforcing the

previous argument. Finally, we can relate the curvature of the profit function to that of the match

cost function. The envelope theorem implies π′ (v) = q∗ (v), and implicit differentiation of the first

order condition yields

π′′ (v) =
1

cm′′ (q∗ (v))
.

Because q∗ (v) is strictly increasing, we conclude that π′′′ (v) > 0 if and only if m′′′ (q) < 0. �

Proof of Lemma 3. If costs are quadratic, so are the complete-information profits. By symmetry
of the distribution, v̄ = E [v | v ∈ [v̄ − ε, v̄ + ε]] for any ε > 0. The marginal value of information is

then given by

p (v) = π∗ (v)− (vq∗ (v̄)− cm (q∗ (v̄))) = (v̄ − v)2 /4c.

Solving for v̂ yields the demand function. �

Proof of Proposition 1. (1.) Consider the inverse demand for data in the low-value purchases
case,

p (v1) = v1 (q∗(v1)− q̄ (v1))− c (m (q∗(v1))−m (q̄ (v1))) .

As k increases, by second-order stochastic dominance, the conditional expectation E [v | v > v1]
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increases as well. Therefore, q̄ (v1) increases, and because q̄ (v1) > q∗ (v1), the willingness to pay

p (v1) increases as well. An identical argument applies to the case of high-v purchases.

(2.) From part (1.) we know the threshold v1 (p, k) is increasing in k. If in addition, v1 < v̄, then

F (v1, k) is increasing in k, and therefore F (v1 (p, k) , k) is increasing a fortiori.

(3.) Under two-sided purchases, we know q̄ ≡ q∗ (v̄) for all k, and hence the willingness to pay

for v is independent of the distribution. However, as k increases, both F (v1, k) and 1 − F (v2, k)

increase, so the quantity of data demanded increases. �

Proof of Proposition 2. Consider the case of low-value purchases first, i.e. let A = [vL, v1]. The

inverse demand function p (v1) is given by

p (v1) = π (v1)− v1q̄ (v1) + cm (q̄ (v1)) .

Now for a fixed v1, let

v̄ = E [v | v > v1] ,

so that

q̄ (v1) = q∗ (v̄) , with v̄ > v1.

Now consider the derivative

∂p (v1, c)

∂c
= − (m (q∗ (v1))−m (q∗ (v̄)))−

(
v1 − cm′ (q∗ (v̄))

) ∂q∗ (v̄)

∂c
,

where
∂q∗ (v̄)

∂c
= − m′ (q∗ (v̄))

cm′′ (q∗ (v̄))
.

Thus, using the first order condition v = cm′ (q∗ (v)) we obtain

∂p (v1, c)

∂c
= m (q∗ (v̄))−m (q∗ (v1)) + (v1 − v̄)

m′ (q∗ (v̄))

cm′′ (q∗ (v̄))
. (25)

Notice that, as a function of v1, the right-hand side of (25) is equal to zero at v1 = v̄, and its

derivative with respect to v1 is equal to

∂2p (v1, c)

∂v1∂c
= −m′ (q∗ (v1))

dq∗ (v1)

dv1
+

m′ (q∗ (v̄))

cm′′ (q∗ (v̄))
.

Because
dq∗ (v1)

dv1
=

1

cm′′ (q∗ (v1))

we then obtain
∂2p (v1, c)

∂v1∂c
=

1

c

(
m′ (q∗ (v̄))

m′′ (q∗ (v̄))
− m′ (q∗ (v1))

m′′ (q∗ (v1))

)
. (26)

Because q∗ (v) is strictly increasing in v, if m′′ (q) /m′ (q) is decreasing in q then the expression in

(26) is positive, which implies ∂p/∂c is negative for all v1 < v̄.
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An identical argument establishes this result for the case of A = [v2, vH ]. The two-sided case under

quadratic costs follows directly from equation (9). �

Proof of Proposition 3. (1.) By symmetry and Proposition 3, the monopolist’s profit as a

function of price is given by

Π (p, k) = 2pF (v̄ − 2
√
cp, k) . (27)

The result then follows from implicit differentiation of the first order condition

F (v̄ − 2
√
cp, k)−√pFv (v̄ − 2

√
cp, k) = 0,

with respect to k. Thus,

∂2Π

∂p∂k
= Fk (v̄ − 2

√
cp, k)−√pFvk (v̄ − 2

√
cp, k)

∝ F (v̄ − 2
√
cp, k)Fk (v̄ − 2

√
cp, k)− Fv (v̄ − 2

√
cp, k)Fvk (v̄ − 2

√
cp, k)

∝ −
∂
[
lnF

(
v̄ − 2

√
cp, k

)]
∂v∂k

.

(2.) Notice that the total quantity of cookies sold is 2F (v̂ (k) , k) , where v̂ = v̄ −√cp. Therefore

dF

dk
= Fk (v̂, k) + f (v̂)

∂v̂

∂k
,

and if ∂ lnF
(
v̄ − 2

√
cp, k

)
/∂v∂k > 0 then the monopoly price is decreasing, which is suffi cient for

dF/dk > 0.

(3.) By the rotation order, we know Fk > 0 for v < v̄, but because of the constant-mean assumption,

it must be that Fvk < 0 around v̄. The result then follows from part (1.). �

Proof of Proposition 4. (1.) Consider first the case of uniformly distributed types and low-value
cookie purchases. The data provider maximizes

p (v1, c)F (v1) ,

where F (v1) = (v1 − vL) / (vH − vL) and the inverse demand function is given by

p (v1, c) = v1 (q∗(v1)− q̄ (v1))− c (m (q∗(v1))−m (q̄ (v1))) .

Rewrite the objective as a function of p, as follows:

Π (p) = (v1 (p, c)− vL) p.

Thus, log-submodularity of v1 (p, c)−vL is suffi cient for p to be decreasing in v1. Therefore, consider

∂2 ln (v1 − vL)

∂c∂p
∝ ∂v1

∂c
− v1 − vL
∂v1/∂p

∂2v1
∂p∂c

.
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Clearly, ∂v1/∂p < 0. In addition, if m′′ (q) /m′ (q) is decreasing, we know from Proposition 2 that

∂v1/∂c < 0. Finally, we know from (26) that ∂2p/∂v1∂c > 0, which implies ∂2v1/∂p∂c < 0. This

establishes the first part of the result. Both inequalities are reversed if m′′ (q) /m′ (q) is increasing.

Finally, notice that m′′ (q) /m′ (q) decreasing implies v1 is also submodular (and supermodular

for m′′ (q) /m′ (q) increasing). Therefore, any distribution (such as the power distribution) that

preserves log-modularity guarantees that the monopoly price is decreasing in c.

(2.) This follows immediately from the proof of Proposition 3, through the change of variable

y = pc in the profit function for the data provider (27). �

Proof of Lemma 4. Consider part (2.) first. Differentiate m (q∗ (v)) with respect to v. We obtain

dm (q∗ (v))

dv
= m′ (q∗ (v))

dq∗ (v)

dv
=

m′ (q∗ (v))

cm′′ (q∗ (v))
.

Therefore, the demand for advertising space is convex in v if and only if m′′ (q) /m′ (q) is decreasing

in q.

(1) To establish the first statement, focus on the case A = [vL, v1] so that

M =

∫ v1

vL

m (q∗ (v)) dF (v) + (1− F (v1))m (q∗ (v̄)) .

Thus

∂M

∂v1
= (m (q∗ (v1))−m (q∗ (v̄))) f (v1) + (1− F (v1))m

′ (q∗ (v̄))
∂q∗ (v̄)

∂v̄

∂v̄

∂v1

= f (v1)

(
m (q∗ (v1))−m (q∗ (v̄)) +

m′ (q∗ (v̄))

cm′′ (q∗ (v̄))
(v̄ − v1)

)
.

As shown in (25)-(26), this expression is positive if and only if m′′ (q) /m′ (q) is decreasing in q,

which corresponds to m (q∗ (v)) being convex in v. �

Proof of Lemma 5. If the publisher buys cookies at random, then regardless of the measure

bought, the uninformed advertiser’s demand is given by m (q∗ (E [v | v 6∈ A0])) , where A0 is the
(possibly empty) set of cookies bought by the advertisers. Thus, the publisher’s marginal willingness

to pay is given by

c (E [m (q∗ (v))]− E [m (q∗ (v | A0))]) ,

and thus it is constant in the measure of cookies bought.

Proof of Proposition 5 (1.) Let cookies be uniformly distributed, and assume without loss that
v ∈ [0, 1]. Suppose that the publisher purchases a measure δ of cookies, i.e. v ∈ [a, a+ δ] . Consider

the publisher’s revenues as a function of a,

R (a; δ) =

∫ a

0
r (v) dv + δr

(
a+

δ

2

)
+

∫ 1

a+δ
r (v) dv.
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Now consider the optimal choice of a, and compute the derivative

Ra (a; δ) = r (a)− r (a+ δ) + δr′
(
a+

δ

2

)
= −

∫ a+δ

a

(
r′ (v)− r′

(
a+

δ

2

))
dv

and conclude that Ra (a; δ) ≥ (≤) 0 if the function r′ (v) is convex (concave).

(2.) The expression follows from implicit differentiation (twice) of the first-order condition for the

advertisers’choice of contact intensity

v = cm′ (q∗v) .

(3.) This follows directly from substitution of m (q) = qb into (11). �

Proof of Proposition 6. When the cost of advertising is exogenous, the monopolist solves

max
p
pD (p, c) ,

where D (p, c) denotes the total demand for cookies at a price of p when the cost of advertising is

c. The first-order condition is then given by

D (p, c) + pDp (p, c) = 0.

When c is endogenous, the monopoly price satisfies

D (p, c∗) + pDp (p, c∗) + pDc (p, c∗)
∂c∗

∂p
= 0.

Applying Corollary 3, we obtain that the two partial derivatives Fc (p, c) and ∂c∗/∂p have the

same sign, thus the monopoly price will be higher in the second case. Similarly, fixing the cost of

advertising to its equilibrium level c (M) results in an increase in the monopoly price.. �

Proof of Proposition 7. Under monopoly, the data provider’s chooses v2 to solve

vM2 = arg max
v

[p (v, v) (1− F (v))] .

The first-order condition is given by

−p (v, v) f (v) + ∂p (v, v∗2) /∂v + ∂p (v, v∗2) /∂x = 0.

Conversely, in the symmetric equilibrium with a continuum of sellers, the threshold v∗2 solves

−p (v, v∗2) f (v) + ∂p (v, v∗2) /∂v = 0.
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However,
∂p (v, v∗2)

∂x
= −∂π (v, q∗ (E [v < x]))

∂q

∂q∗

∂v

∂E [v < x]

∂x
< 0,

because q∗ (v) is strictly increasing in v, and therefore ∂π (v, q) /∂q > 0 for all q < q∗ (v) . Therefore,

the price under competition is higher than under monopoly. �

Proof of Lemma 6. (1.) Consider the advertisers’problem upon not receiving a signal. If they
choose q = 0, the value of the marginal cookie is given by max {0, v − c}, which is increasing in v.
If instead they choose q = 1, the value of the marginal cookie is max {0, c− v}, hence decreasing
in v. Therefore, the value of information is strictly monotone in v, with the sign of its derivative

determined by the uninformed action.

(2.) The marginal willingness to pay is therefore increasing (decreasing) in c ifq0 = 1 (q0 = 0). �

In the next results, we denote the difference in profits by

∆ (p; c) , π+ (p, c)− π− (p, c) = −
∫ c+p

c−p
(v − c) dF (v)− p (1− F (c+ p)− F (c− p)) . (28)

The following lemma establishes the key properties of the function ∆ (p; c) .

Lemma 10 The difference in advertiser profits between high- and low-value purchases may be
written as

∆ (p; c) =

∫ c+p

c−p
F (v) dv − p.

It satisfies the following properties.

1. ∆ (p; c) is convex (concave) in p if F (v) is convex (concave) in v.

2. ∆ (0, c) = 0.

3. ∂∆ (0; c) /∂p ≥ 0 if and only if F (c) ≥ 1/2.

Proof of Lemma 10. (1.) Integrating (28) by parts, we obtain

∆ (p; c) = −
(
pF (c+ p) + pF (c− p)−

∫ c+p

c−p
F (v) dv

)
− p (1− F (c+ p)− F (c− p))

=

∫ c+p

c−p
F (v) dv − p.

Differentiating with respect to p we obtain

∆p (p; c) = F (c+ p) + F (c− p)− 1, (29)

hence evaluating at p = 0 we obtain 2F (c)− 1. Differentiating once more, we obtain

∆pp (p; c) = f (c+ p)− f (c− p) ,
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which establishes the result.

(2.) and (3.) Follow by inspection of (28) and (29) respectively. �

Proof of Proposition 8. (1.) By Lemma 10, if f (v) is decreasing, ∆ (p, c) is concave in p. For

c ≤ cM , ∆ (p, c) is decreasing in p at p = 0, hence negative everywhere. For c > cM , the difference

∆ (p, c) is increasing in p at p = 0. Furthermore, ∆ (p, c) is increasing in c, and so the solution p̃ (c)

to ∆ (p, c) = 0 must be increasing in c, because ∆ (p, c) must be decreasing in p at a positive root.

Such a root exists as long as p̃ (c) ≤ c (otherwise buying from the bottom cannot be profitable).

Substituting c = p into the definition of ∆ (p, c) we obtain the equation in the text.

(2.) By Lemma 10, if f (v) is increasing, ∆ (p, c) is convex in p. For c ≥ cM , ∆ (p, c) is increasing

in p at p = 0, hence positive everywhere. For c < cM , the difference ∆ (p, c) is decreasing in p at

p = 0, which means (by the same logic as in part (1.)) that the solution p̃ (c) must be decreasing

in c. However, a positive root to the equation ∆ (p, c) exists as long as c+ p̃ (c) ≤ 1. Substituting

p = 1− c into ∆ (p, c) = 0 yields the equation in the text. �

Proof of Lemma 8. (1.) The transfer payment is given by

t (θ) = −c
∫ 1

x(θ)
g (v) dv −

∫ θ

θ
θ′x
(
θ′
)
g
(
x
(
θ′
)) dx (θ′)

dθ′
dθ′, (30)

and differentiating (30) with respect to θ we find:

t′ (θ) = cf (x (θ))
dx (θ)

dθ
− θx (θ) f (x (θ))

dx (θ)

dθ
dθ (31)

= −dx (θ)

dθ
f (x (θ)) (θx (θ)− c) ≥ 0,

where the inequality follows from (17) and Lemma 7.

Proof. (2.) We can rewrite the transfer also in terms of the threshold x (θ), and hence t (x (θ)),

and so using (31), we get

t′ (x)
dx (θ)

dθ
= −dx (θ)

dθ
f (x (θ)) (θx (θ)− c)⇔ t′ (x) = −f (x (θ)) (θx (θ)− c) .

Now, the unit price per cookie sold at realization x (θ) is given by:

t′ (x (θ))

f (x (θ))
= − (θx (θ)− c) ,

and using the solution of x (θ) from (17), we get

t′ (x (θ))

f (x (θ))
= −

θ c

θ − 1−G(θ)
g(θ)

− c

 = −
c1−G(θ)g(θ)

θ − 1−G(θ)
g(θ)

.
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Thus if θ′ > θ and hence x
(
θ′
)
< x (θ), then

t′
(
x
(
θ′
))

f
(
x
(
θ′
)) < t′ (x (θ))

f (x (θ))
,

and thus the price per cookie is decreasing. �

Proof of Lemma 9. Consider an arbitrary, and finite, optimal mechanism {Hθ, t (θ)}. By hy-
pothesis it satisfies the interim incentive constraints, that is for all types θ, θ′, we have

U (θ) ,

 ∑
w∈W (θ)

max {θw − c, 0}hθ (w)

−t (θ) ≥

 ∑
w∈W (θ′)

max {θw − c, 0}hθ′ (w)

−t (θ′) , U (θ, θ′) .
We denote by W+ (θ) the set of posterior expectations that lead to a contact with the advertiser,

or

W+ (θ) , {w ∈W |hθ (w) > 0 ∧ θw ≥ c} ,

and by W− (θ) the set of posterior expectations that do not lead to a contact with the advertiser,

or

W− (θ) , {w ∈W |hθ (w) > 0 ∧ θw < c} .

Now, we can clearly bundle all the posterior expectations in W+ (θ) and in W− (θ) to obtain a

binary support as described in (24). Now clearly, under the constructed binary support, the indirect

utility remains constants, but the value of a misreport is (weakly) smaller, that is for all θ 6= θ′ : ∑
w∈W (θ′)

max {θw − c, 0}hθ′ (w)

− t (θ′) ≥
 ∑
w∈B(θ′)

max {θw − c, 0}hθ′ (w)

− t (θ′) ,
after all, in the original deviation the advertiser could have acted as in the binary support, but he

had a possibly larger set of choices available to him, and hence is doing weakly worse in the binary

mechanism, i.e. the value of a misreport has been (uniformly) lowered across all types. �
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