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Abstract

We build a tractable structural model to study the dynamic participation in-
centives in online competitions. We estimate the model using publicly available
data from 17 prediction contests hosted by the website Kaggle.com. We study
how participants’ incentives are shaped by the contest design in a series of coun-
terfactual exercises. Specifically, we study how disclosing a leaderboard, awarding
different number of prizes, and capping the number of participants affect the par-
ticipants’ incentives to make submissions throughout the contest as well as the
contest outcomes.
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1 Introduction

Online tournaments are widely used by government agencies and private companies
to outsource innovative approaches to solve problems. Since 2010, U.S. government
agencies have sponsored over 730 competitions that have awarded over $250 million in
prizes to procure software, ideas, or designs through the website www.challenge.gov. For
instance, DARPA launched a competition to accurately predict cases of chikungunya
virus, awarding a total reward of $500,000.1 Apart from government sponsored contests,
several two-sided platforms that match companies’ problems and data scientists have
recently emerged.2 We collect publicly available data from one of these platforms and
build a structural model to study economic incentives in a prominent class of online
competitions called prediction contests—contests where the goal is to procure a model
that delivers accurate predictions of a random variable. In a series of counterfactual
exercises, we study how contest design shapes incentives and impacts contest outcomes.
In the competitions that we analyze, the designer chooses to award multiple prizes, does
not restrict the number of players, allows players to make multiple submissions over
time, and discloses a real-time noisy ranking of participants based on their performance
in the contest.3 We study how dynamic participation and contest outcomes would
change when varying the information about contestants’ performance that is made
public,4 if there was a single prize, or if entry was restricted.

The “Big Data” revolution,5 facilitated by the advances in computer power and stor-
age technology, has given firms and individuals the ability to create and store greater
amounts of information. Large datasets offer the possibility to analyze complex prob-
lems, and online competitions offer an alternative to seek solutions to these problems.
The appeal of online competitions is that they attract participants with different abili-
ties and expertise and may facilitate the procurement of solutions that otherwise would
had never been found (Lakhani et al., 2013). By developing an accurate predictive

1http://www.darpa.mil/news-events/2015-05-27
2Examples include CrowdAnalytix, Tunedit, InnoCentive, Topcoder, HackerRank, and Kaggle.
3The ranking is noisy in the sense that at any moment of time the ranking that would be used to

determine the winner of the competition is not the same as the ranking that is disclosed to participants.
Both rankings, however, are highly correlated. We provide more details below.

4One of the designs that we study is a “blind tournament,” as in Taylor (1995).
5http://harvardmagazine.com/2014/03/why-big-data-is-a-big-deal
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algorithm from a large dataset of past observations, it is possible to diagnose diseases
early on, to prevent epidemics from spreading in a population, or to manage inventory
when there is fluctuating demand. Hence, it is important to understand how the design
of online competitions affect participants’ incentives and contest outcomes.

We use public information on contests hosted by Kaggle,6 a company dedicated to host
prediction contests. Through this platform, different companies have sponsored over
200 competitions that have awarded over $5 million dollars in prizes. For instance,
EMI sponsored a $10,000 contest to predict if listeners would like a new song; IEEE
sponsored a $60,000 contest to diagnose schizophrenia using multimodal features from
MRI scans; The National Data Science Bowl sponsored a $175,000 contest to predict
the ocean’s health by identifying plankton species from multiple images. In all of these
contests, participants are provided with a training dataset for them to develop a predic-
tion algorithm, and then their algorithms are evaluated based on how well they perform
out of sample. The contests that we analyze have an objective evaluation criterion that
is disclosed to participants at the beginning of the contest.7 The objective evaluation
criterion in prediction contests is in contrast to the evaluation criteria in ideation con-
tests (Huang et al., 2014; Kireyev, 2016), innovation contests (Boudreau et al., 2016),
design contests (Gross, 2015), or labor promotions (Lazear and Rosen, 1979; Baker
et al., 1988), where evaluation (or some part of it) has a subjective component.

Aside from the training dataset, participants of Kaggle contests are also provided with
a test dataset. Unlike the training dataset which includes both an outcome variable
and covariates, the test dataset only includes covariates. The test dataset is used
to evaluate the out of sample performance of the participants’ prediction algorithms.
The performance of an algorithm is quantified using the contest’s evaluation criterion.
For an algorithm to compete for the prize, participants must submit outcome variable

6https://www.kaggle.com/
7For example, in the ocean’s health competition, the participants submitted their predictions (pij)

and were evaluated according to the rule

logloss = − 1
N

N∑
i=1

M∑
j=1

yij log(pij).

The winner was the submission with the lowest score. For more details, visit:
https://www.kaggle.com/c/datasciencebowl/details/evaluation.
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predictions for each observation in the test dataset (i.e., make a submission). Kaggle
divides the test data in two subsets without informing participants how the division is
made.8 The first test data subset is used to generate a public score, which is posted
in real-time on a public leaderboard that can be observed by any Internet user. The
predictions on this second test data subset generate a private score, which is never
observed by players before the end of the contest. The winner of a Kaggle competition
is the player with the maximum private score. In our data, the correlation between
public and private is 0.99, but only 76 percent of the contest winners finish in the top
3 of the public leaderboard.

Our paper contributes to the fairly recent literature of empirical studies of contests.
The main novelty of our paper is to build a tractable model to study incentives in
prediction contests where players are allowed to make multiple submissions over time
and information is disclosed throughout the contest. Modeling a dynamic prediction
contest poses various economic questions and technical challenges. First, although there
is a real-time leaderboard, contestants are always uncertain of their actual position in
the contest. In other words, the contestants only receive a noisy signal of their cur-
rent position in the contest. Despite the fact that private and public scores are highly
correlated, the rankings under the public and private scores vary. This feature may
create an encourage or discouragement effect. Second, from a contest design perspec-
tive, the decision of disclosing the public ranking may effect the decision to continue
participating in the contest. Third, on the technical side, there is a large number of
heterogeneous participants sending thousands of submissions. An analytic solution for
a dynamic model with heterogeneous and fully-rational players is cumbersome. In fact,
given that participants are unsure of their position in the leaderboard, they need to
keep track of the whole public history to in order to compute the payoff of sending
an extra submission. The dimensionality of the public information released over time
makes the state state space become computationally intractable. To deal with this
problem, we assume players are small—i.e., they do not take into account the effect
of their actions on other player’s strategies—and also limit the amount of information
that players believe is relevant for predicting their chances of winning the contest.

8More specifically, Kaggle does not inform participants which observations in the test data corre-
spond to each subset.
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In the model, participants are heterogeneous in their ability to produce algorithms that
achieve high scores. In practice, this means that participants draw submissions from
different score distributions. We assume that once players enter a contest, they work on
at most one submission at a time. Conditional on choosing to build an algorithm (i.e.,
make a submission), we assume that finishing the submission takes the player t units of
time, where t is a random variable. Once the submission is finished, the player chooses
whether to build a new submission or to exit the contest. When deciding whether to
build a new submission, the player compares the benefit of building a new submission
(i.e., how the submission increases the players’ expected payoff) with the cost of making
the submission, which is a random variable. In computing the benefit of making a
submission, the player considers her chances of building a winning submission given
the current public leaderboard scores and also considering the fact that other players
will make more submissions in the remaining contest time, and that those submissions
will lower the player’s chance of winning the contest.

Our results show that contest design matters and there is no one-size-fits-all policy
prescription. Our counterfactual simulations show that there is heterogeneity in the
response of both participation and contest outcomes to different contest designs. We
present our results in terms of how contest design impacts the number of submissions—
our measure of participation—because an increase in the number of submissions gener-
ally leads to an increase in the maximum score. We find that manipulating the amount
of information disclosed to participants has economically significant effects on the num-
ber of submissions. If the contest designer hid the leaderboard—that is, if the contest
designer did not provide public information about contestants’ performance—the num-
ber of submissions would increase on average by 11 percent. Increasing the correlation
between the private and public scores—a policy that increases the amount of informa-
tion about contestants’ performance that is made public—would decrease the number
of submissions by 2.7 percent. Allocating a single prize rather than several prizes has
a small and insignificant effect on the number of submissions. Limiting the number
of players that participate in a contest has a positive effect on the individual dynamic
incentives to participate but also a direct negative effect on participation. We find that
when the number of participants is reduced by 10 percent in each contest, the increase
in participation from each individual does not compensate for the reduction in the num-
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ber of players and the total number of submissions falls by an average of 8.7 percent.
In summary, these results suggest that the most effective tool for the contest designer
to increase the average number of submissions is manipulating information disclosure.

Finally, it is worth mentioning that participation in these online competitions is not
solely driven by the monetary prize. Participants can learn new skills by working with
new types of problems and by sharing their ideas with other researchers. Similarly
to software engineers contributing on open-source software (Lerner and Tirole, 2002),
performing well in a data-science competition is a signal of quality to potential future
employers. Hence, our cost estimates of the cost of making a submission also capture
the non-monetary rewards of participating.

In the next subsection we review the relevant literature. In Section 2 we present de-
scriptives that motivate the modeling choices. Section 3 introduces the empirical model
and Section 4 discusses estimation and presents the model estimates. Section 5 presents
counterfactual exercises to grasp the effect of various alternative contest designs. Fi-
nally, in Section 6, we summarize our results and provide further discussion.

1.1 Related Literature

Contests are a popular open innovation mechanism (Chesbrough et al., 2006). An
extensive theoretical literature analyzes how the design of a contest—the number of
participants, the number of prizes, and the disclosure of information—affects the incen-
tives to participate and the quality of the best submission.

Our counterfactuals analyze how the number of participants and the distribution of
prizes affects incentives to participate. Taylor (1995) and Fullerton and McAfee (1999)
show that restricting the number of competitors in winner-takes-all tournaments in-
creases equilibrium outcomes. Intuitively, with a large number of participants players
have less incentives to exert costly effort because they have a smaller chance of win-
ning. Moldovanu and Sela (2001) show that, when players have different abilities, the
optimal number of prizes depends on the shape of the cost of effort function. Che and
Gale (2003), in a model where the designer chooses a menu of prizes and the number
of participants, find that one prize and two participants is optimal.
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The conclusion of most of these papers is that limiting the number of competitor is
optimal, although in practice the contest designer typically encourages free-entry par-
ticipation, as in the contests we analyze. Terwiesch and Xu (2008) incorporates diversity
into the preferences of the contest designer counteracting the effect of participation on
effort. Boudreau et al. (2011) tests this theory and show that both of these forces
interact. They find that more competitors shifts the distribution of outcomes to the
left, but the maximum outcome is higher. Boudreau et al. (2016) find that competitors
of different ability respond differently to the number of participants. Their empirical
finding shows that low-ability players are almost unresponsive to the total number of
participants, while medium-ability (high-ability) players decrease (increase) their effort
when there are more rivals.

The effect of information disclosure on incentives in dynamic tournament has also been
studied. If players observe a noisy signal of the effort exerted by their rivals, releasing
information creates dynamic asymmetries between the contestants. Aoyagi (2010) ex-
plores a dynamic tournament and compares the effort provision by agents under full
disclosure of information (i.e., players observe their relative position) versus no infor-
mation disclosure. Which one of these two disclosure policies dominates depends on the
shape of the cost of effort function. This setting is further explored by Ederer (2010),
who adds private information, and by Klein and Schmutzler (2016), who add design
features such as the allocation of prizes and different forms of evaluating performance.

The environment we study is dynamic and each contestant can submit multiple sub-
missions conditional on the history of the contest. Konrad (2012) reviews the literature
on dynamic contests. Dynamic contest design has been recently studied by Halac et al.
(2014), Bimpikis et al. (2014), and Benkert and Letina (2016). Takahashi (2015) em-
pirically estimates a war of attrition.

There is a growing empirical literature analyzing different classes of contests. Gross
(2015) studies how the number of participants changes incentives to create novel solu-
tions versus marginally better ones. In a static environment, Kireyev (2016) uses an
empirical model to study how elements of contest design affect participation and quality
of outcomes. In these ‘ideation contests,’ the evaluation is subjective. Bockstedt et al.
(2016) descriptively study the effect of full feedback on participation. Finally, Huang
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et al. (2014) estimates a dynamic structural model to study individual behavior and
outcomes in a platform where individuals can contribute ideas and some of them are
implemented.

Another strand of the literature that relates to our research is the question of why
people spend time and effort participating in contests where there monetary reward is
small or even non-existent. Lerner and Tirole (2002) study why people contribute to
open software and they argue that good quality contributions are a signal of ability to
potential employers. Related to this point, participants may have private information
on the actual benefit from winning the contest. Chawla et al. (2015) study optimal
contest design of crowd-sourcing contests when participants have private information
about their value of winning. Alternatively, people may just enjoy participating in a
contest because it gives them social status (Moldovanu et al., 2007).

Apart from prizes, number of competitors, and feedback, there are other design tools.
Megidish and Sela (2013) consider contests in which participants must exert some (ex-
ogenous) minimal effort and show that awarding a single prize is dominated by giving
each participant an equal share of prize when the exogenous threshold for participation
is high. Moldovanu and Sela (2006) show that for a large number of competitors it is
optimal to split them in two divisions. In the first round participants compete within
each of these divisions, and in the second round the winners of each division compete
to determine the final winner.

Finally, it is possible to establish a parallel between a contest and an auction. While
there is a well-established empirical literature on bidding behavior in auctions (Hen-
dricks and Porter, 1988; Li et al., 2002; Bajari and Hortacsu, 2003), there are fewer
papers analyzing behavior in contests. We see our contribution as one of the first
papers to study contest design in a dynamic setting with objective evaluations.
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2 Background, Data, and Motivating Facts

2.1 Background and Data

We use publicly available information on contests hosted by Kaggle.9 The dataset con-
tains several types of competitions. Featured competitions are public competitions to
solve commercial problems. The winners grant the sponsor a non-exclusive license to
their submissions in exchange for a monetary award. These competitions represent
about 75 percent of the competitions in the data. Research competitions (16 percent
of the competitions in the data) are public competitions with the goal of providing
a public good. Prizes for research competitions include monetary awards, conference
invitations, and publications in peer-reviewed journals. The winners of research com-
petitions must release their solutions open source. Other contest categories include
competitions for recruiting (0.32 percent of the competitions in our data), competitions
for data visualization (2.25 percent of the competitions in the data), and competitions
for fun (4.5 percent of the competitions in the data).

We work with a subset of 55 featured competitions, all of which offered a monetary
prize of at least $1,000 and received at least 1,000 submissions. These contests have the
feature that the winning submission either maximizes or minimizes a well-defined rule,
and have an informative public score leaderboard. In these competitions, there was
an average of 1,755 teams per contest, competing for rewards that ranged from $1,000
to $500,000 and averaged $30,642. On average, 15,169 submissions were made per
contest. The characteristics of a partial list of competitions are summarized in Table 1
(see Table A.1 in the Online Appendix for the full list). All of these competitions, with
the exception of the Heritage Health Prize, granted prizes to the top three scores.10 For
example, in the Coupon Purchase Prediction competition, the three submissions with
the highest scores were awarded $30,000, $15,000, and $5,000, respectively.

As mentioned in the Introduction, one interesting feature of Kaggle is its rules to de-
termine the contest winner. There is a large dataset partitioned into three subsamples.

9https://www.kaggle.com/kaggle/meta-kaggle
10The following contests also granted a prize to the fourth position: Don’t Get Kicked!, Springleaf

Marketing Response, KDD Cup 2013 - Author Disambiguation Challenge (Track 2).

9

https://www.kaggle.com/kaggle/meta-kaggle


Name of the Total Number of Teams Start Date Deadline
Competition Reward Submissions
Heritage Health Prize 500,000 25,316 1,353 04/04/2011 04/04/2013
Allstate Purchase Prediction Challenge 50,000 24,526 1,568 02/18/2014 05/19/2014
Higgs Boson Machine Learning Challenge 13,000 35,772 1,785 05/12/2014 09/15/2014
Acquire Valued Shoppers Challenge 30,000 25,195 952 04/10/2014 07/14/2014
Liberty Mutual Group - Fire Peril Loss Cost 25,000 14,812 634 07/08/2014 09/02/2014
Driver Telematics Analysis 30,000 36,065 1,528 12/15/2014 03/16/2015
Crowdflower Search Results Relevance 20,000 23,244 1,326 05/11/2015 07/06/2015
Caterpillar Tube Pricing 30,000 26,360 1,323 06/29/2015 08/31/2015
Liberty Mutual Group: Property Inspection Prediction 25,000 45,875 2,236 07/06/2015 08/28/2015
Coupon Purchase Prediction 50,000 18,477 1,076 07/16/2015 09/30/2015
Springleaf Marketing Response 100,000 39,444 2,226 08/14/2015 10/19/2015
Homesite Quote Conversion 20,000 36,368 1,764 11/09/2015 02/08/2016
Prudential Life Insurance Assessment 30,000 45,490 2,619 11/23/2015 02/15/2016
Santander Customer Satisfaction 60,000 93,559 5,123 03/02/2016 05/02/2016
Expedia Hotel Recommendations 25,000 22,709 1,974 04/15/2016 06/10/2016

Table 1: Summary of the Competitions in the Data (Partial List)

Note: The table only considers submissions that received a score. The total reward is measured in US
dollars at the moment of the competition. See Table A.1 in the Online Appendix for the complete list
of competitions.

The first subsample can be used by the contestants to develop their predictions. This
first subsample provides both outcome variables and covariates. The second and third
subsamples are the test data, and these subsamples are used for evaluation. Both test
subsamples are provided to the players as a single dataset and only include covariates
(i.e., no outcome variables). Kaggle computes the public score and private score by
evaluating how well a player’s submission predicts the outcome variables in the second
and third subsample, respectively. For example, in the Heritage Health Prize, the test
data was divided into a 30 percent subsample to compute the public scores and a 70
percent subsample to compute the private scores. Kaggle does not disclose what part
of the test data are used to compute the public and private scores.

Kaggle displays, in real-time, a public leaderboard which contains all the public scores
of the submissions of all participants. Since these public scores are calculated by only
using part of the test dataset (e.g., 30 percent in the Heritage Health Prize competition),
the final standings may be different than the ones displayed in the public leaderboard.
Although the correlation between public and private scores is very high in our sample
(the coefficient of correlation is 0.99), the ranking in the public leaderboard is not nec-
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essarily equal to the ranking in the private leaderboard. Hence, the public leaderboard
provides informative yet noisy signals on the performance of all players throughout the
contest. To illustrate this noise, consider the winner of each of the 55 competitions that
we analyze—i.e., the owner of the submission with the highest private score (see Ta-
ble A.2 in the Online Appendix). In 27 out of 55 competitions (49 percent), the winner
of the contest was ranked number one in the final public leaderboard, and in 42 out
of 55 competitions (76 percent) the winner was within the top three of the final public
leaderboard. That is, while the public leaderboard is informative about the players’
payoff-relevant performance, the co-existence of the public and private scores creates
uncertainty about the true standing of a player in the competition.

2.2 Motivating Facts

We present a series of empirical facts that will guide our modeling choices. For each
contest, we observe information on all submissions including the time of submission,
the team identity, and both the public and private scores of the submission. With this
information, we can reconstruct both the public and private leaderboard at every instant
of time. Throughout the paper, we normalize the contest length to one, implying that
the submission times always lie on the unit interval. Also, we normalize the total prize
to one and transform the public and private scores to be contained in the unit interval
by applying the transformation (xi −minj xj)/(maxj xj −minj xj) to each observation
of variable x. These normalizations allow us to make meaningful comparisons across
contests.

We start by examining some summary statistics. Table 2 (Panel A) shows that the
(transformed) public and private score take an average value of 0.88, with a standard
deviation of 0.2. The average submission time is when 60 percent of the contest time has
elapsed, and two consecutive submissions by the same team are spaced in time by on
average of 2 percent of the contest duration. Panel B shows that teams on average send
16.38 submissions per contest, with some teams sending as many as several hundred.
Lastly, 93 percent of the teams are composed by a single member, leading to an average
team size of 1.13.11

11Table A.3 in the Online Appendix shows that 72 percent of users participate in a single contest,
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Panel A: Overall summary statistics
N Mean St. Deviation Min Max

Public score 834,301 0.88 0.20 0.00 1.00
Private score 834,301 0.88 0.20 0.00 1.00
Submission time 834,301 0.60 0.29 0.00 1.00
Time between submissions 783,362 0.02 0.05 0.00 1.00

Panel B: Team-level statistics
N Mean St. Deviation Min Max

Number of submissions 50,937 16.38 29.13 1 671
Number of members 50,937 1.13 0.61 1 40

Table 2: Summary Statistics

Note: An observation in Panel A is a submission; an observation is a team–competition combination
in Panel B. Scores and time are rescaled to be contained in the unit interval (i.e., we apply the
transformation (xi −minj xj)/(maxj xj −minj xj) to each observation of variable x). Time between
submissions is the time between two consecutive submissions by the same team.

Observation 1. Most teams are composed by a single member.

Figure 1 shows how the number of submissions and teams evolve over time. Panel
A partitions all the submissions into time intervals based on their submission time.
The figure shows that the number of submissions increases over time, with roughly 20
percent of them being submitted when 10 percent of the contest time remains, and
only 6 percent of submissions being submitted when 10 percent of the contest time has
elapsed. Panel B shows the timing of entry of new teams into the competition. The
figure shows that the rate of entry is roughly constant over time, with about 20 percent
of teams making their first submission when 20 percent of the contest time remains.

Observation 2. The rate of entry of new teams is constant throughout the contest
duration.

To understand whether teams become more or less productive as time elapses, we
examine the time between submissions at the team level. Figure 2 (Panel A) illustrates
suggesting that most players are one-off participants.
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(b)

Figure 1: Submissions and Entry of Teams Over Time Across all Competitions

Note: An observation is a submission. Panel (a) shows a histogram of submission by elapsed time
categories. Panel (b) shows a local polynomial regression of the number of teams with 1 or more
submissions as a function of time.
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(b)

Figure 2: Time Between Submissions

Note: An observation is a submission. Panel (a) shows the distribution of time between two submis-
sions. Panel (b) shows a local polynomial regression of the time between submissions as a function of
time.

the time between two consecutive submissions by the same team. On average, teams
take 2 percent of the contest time to send two consecutive submissions. Panel B shows
a local polynomial regression for the average time between submission as a function of
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time. The figure shows that the average time between submissions increases over time,
suggesting that either that times are experimenting when they enter the contest or that
finding new ideas becomes increasingly difficult over time. Combined, Figure 1 and
Figure 2 suggest that the increase in submissions at the end of contests is not driven
by teams making submissions at a faster pace over time, but simply because there are
more active teams at the end of the contest and potentially greater incentives to play.

Observation 3. The rate of arrival of submissions increases with time.

(1) (2)
Public Score

Second 25 percent of submissions 0.0445∗∗∗

(0.0004)

Third 25 percent of submissions 0.0624∗∗∗

(0.0004)

Last 25 percent of submissions 0.0744∗∗∗

(0.0004)
Competition × Team FE Yes Yes
Observations 826,310 826,310
R2 0.696 0.715

Table 3: Decomposing the Public Score Variance

Note: Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. An observation is
a submission. Second 25 percent of submissions is an indicator variable for whether a submission is
within the second 25 percent of submissions of a team, where submissions are sorted by submission
time. The other indicators are defined analogously.

Figure 3 shows the joint distribution of public and private scores for all submissions.
The coefficient of correlation between both scores is 0.99.12 Table 3 decomposes the
variance of public scores. In column 1, we find that 70 percent of the variation in

12Notice the cluster of points around (0.3,0.9). These scores have a low private score (around 0.3)
but a high public score. This is an example of overfitting: submissions that deliver a large public score
but they are poor out-of-sample predictors (i.e., not robust submissions).
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Figure 3: Correlation Between Public and Private Scores

Note: An observation is a submission. The private and public scores of each submission are normalized
to range between 0 and 1.

public score is between-team variation, suggesting that teams differ systematically in
the scores that they achieve. In column 2, we allow for dummies that distinguish
each team’s submissions by whether they were early or late submissions (with respect
to each team’s set of submissions). This distinction allows us to measure whether
later submissions made by a team achieved systematically greater scores than earlier
submissions. The table shows that there are within-team improvements over the course
of the contest, although those improvements only explain an additional 1.9 percent
of the overall public score variance. In the model, we will capture these cross-team
differences by allowing for the teams to systematically differ in their ability to produce
high scores. We leave within-team dynamics and learning for future research.

Observation 4. Teams systematically differ in their ability to produce high scores.

With respect to how the public leaderboard shapes behavior, Table 4 suggests that
teams drop out of the competition when they start falling behind in the public score
leaderboard. In the table, we compare how the timing of a team’s last submission
varies with the score gap between the maximum public score and their best public
score up to that moment. A one standard deviation increase in a team’s deviation from
the maximum public score is associated with a team submitting its final submission
(0.03× total contest time) to (0.08× total contest time) sooner. That is, teams that are
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(1) (2)
Timing of last submission

Deviation from max -0.0327∗∗∗ -0.0782∗∗∗

public score (standardized) (0.0012) (0.0018)

Competition FE Yes Yes
Weights No Yes
Observations 50,937 50,937
R2 0.050 0.065

Table 4: Timing of Last Submission as a Function of a Team’s Deviation from the
Maximum Public Score

Note: Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Timing of last
submission is measured relative to the total contest time (i.e., it ranges between 0 and 1). Deviation
from max public score is defined as the competition wide maximum public score at the time of the
submission minus the submitting team’s maximum public score at the time of the submission. We then
standardize this variable using its competition-level standard deviation. Column 2 weighs observations
by the total number of submissions made by each team.

(1) (2)
Number of submissions log(Number of submissions)

After disruptive submission -0.6070∗∗ -0.0748∗∗∗

(0.2741) (0.0247)

Competition FE Yes Yes
Observations 2,531 2,531
R2 0.755 0.764

Table 5: The Impact of Disruptive Submissions on Participation

Note: Robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Disruptive
submissions are defined as submissions that increase the maximum public score by at least 1 percent.
Number of submissions is the number of submissions in time intervals of length 0.001. The regressions
restrict the sample to periods that are within 0.05 time units of the disruptive submission. Both
specifications control for time and time squared.
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lagging behind seem to suffer a discouragement effect and quit the competition. This
exercise sheds light on how information disclosure may affect participation incentives
throughout the competition.

We also analyze how the public leaderboard shapes incentives to participate in Table 5.
In this table, we analyze how the rate of arrival of submissions changes when the
maximum public score jumps by a significant margin. Whenever a submission increases
the maximum public score by a sufficient amount (e.g., 1 percent for our analysis in
Table 5), we call the submission disruptive (see Figure A.1 in the Online Appendix
for an example). Only 0.05 and 0.04 percent of submissions increased the maximum
public score by 0.5 and 1 percent, respectively. To measure how the rate of arrival of
submission changes with a disruptive submission, we first partition time in intervals
of length 0.001 and compute the number of submissions that arrive in each of these
intervals. We then perform a comparison of the number of submissions before-and-
after the arrival of the disruptive submission, restricting attention to periods that are
within 0.05 time units of the disruptive submission. Table 5 shows that the number of
submissions decreases immediately after the disruptive submission by an average of 7.5
percent. We take this as further evidence of both the discouragement effect and how
the public leaderboard affects the behavior of participants.

Observation 5. The public leaderboard shapes participation incentives.

With respect to the timing of submissions that disrupt the leaderboard, Figure 4 plots
the timing of submissions that increased the maximum public score by at least 0.5
percent (Panel A) and 1 percent in (Panel B). In the figure we restrict attention to
submissions that were made when at least 25 percent of the contest time had elapsed
because score processes are noisier earlier in contests. The figure suggests that disrup-
tive submissions arrive uniformly over time. This pattern suggests that teams are not
being strategic about the submission time of solutions that they believe will drastically
change the public leaderboard. This may be driven by the fact that teams only learn
about the out-of-sample performance of a submission after Kaggle has evaluated the
submission. That is, before making the submission, the teams can only evaluate the
solution using the training data, which may not be informative about the solution’s
out-of-sample performance.
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Observation 6. Submissions that disrupt the public leaderboard are submitted uni-
formly over time.
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Figure 4: Timing of Drastic Changes in the Public Leaderboard’s Maximum Score
(i.e., Disruptive Submissions): Cumulative Probability Functions

Note: An observation is a submission that increases the maximum public score by at least x percent.
The figure plots submissions that were made when at least 25 percent of the contest time had elapsed.

3 Empirical Model

We consider a contest with a well-defined evaluation system. The length of the contest,
T > 0, is normalized to T = 1. Players are ranked at the end of the contest and the
first j-th players in the ranking receive prizes of value V1 ≥ ... ≥ Vj.

There is a fixed supply of N players of heterogeneous ability, which is captured by the
set of types Θ = {θ1, ..., θp}.13 We allow for heterogeneous players because Observation
4 suggests heterogeneity among players. The distribution of types, κ(θk) = Pr(θ =
θk), is known by all players. We assume that players enter the contest at a random

13Following Observation 1, we disregard any team behavior and treat each participant as a single
player.
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time τentry distributed according to an exponential distribution of parameter µ > 0.14

The constant rate of entry described by Observation 3 justifies this assumption. The
empirical evidence does not strongly suggest that players strategically choose the time
of entry, but rather they enter at a random time, possibly related to idiosyncratic
shocks such as when they find out about the contest. In our model, although players
can send multiple submissions throughout the contest, they can work at most on one
submission at the time. Working on a submission takes a random time τ distributed
according to an exponential distribution of parameter λ. In general, the parameter λ
could be a function of the type of the player, the number of submissions already sent,
or the time that is left in the contest. For simplicity, however, we assume that λ is a
constant. Observation 3 and Figure 1 motivate this assumption. The behavior shown
in Figure 2, however, suggests a richer dynamic (e.g., experimentation) which we do
not model and leave for future work. An unobserved element of the model is the cost of
building submissions, c ∼ K(σ), where σ is a parameter to be estimated. The decision
of a player when presented with an opportunity to play is to either build a submission
and continue playing or to quit the contest.

The evaluation of a submission is based on the solution sent by a player and a test
dataset d. Each pair (solution, d) maps uniquely into a score through a well-defined
formula. Motivated by the evaluation system used in practice, we consider two test
datasets, d1 and d2, which define two scores: the public score, computed using the
solution submitted by the player and test dataset d1; and the private score, computed
using the solution submitted by the player and test dataset d2. Instead of modeling
the solution submitted by the players, we model the score of a submission as a random
variable. A player of type θ draws a public-private score pair (ppublic,θ, pprivate,θ) from
a joint distribution Hθ([0, 1]2). Players know the joint distribution Hθ, but they do
not observe the realization (ppublic,θ, pprivate,θ). This pair of scores is private information
of the contest designer. In the baseline case, the contest designer discloses, in real
time, only the public score ppublic,θ but not the private score pprivate,θ. The final ranking,
however, is constructed with the private scores.15 Figure 3 shows that public and private

14When players enter the competition, we assume they get a free submission. This assumption is
standard in the search literature (Diamond, 1971).

15Although players are allowed to send multiple submissions—and each player sends about 20 sub-
missions on average—the final ranking is computed by using at most two submissions by each player.
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scores are highly correlated.16

The contest designer releases, in real time, the public scores and the identity of the
players that obtained those scores. The collection of pairs (identity, score) from the
beginning of the contest to instant t conforms the public leaderboard, denoted by
Lt = {(identity, score)j}

Jt
j=1, where Jt is the total number of submissions up to time

t. Conditional on the terminal public history LT , each player i is able to compute
pfinal`,i = Pr(i’s private ranking is `|LT ), which is the probability of ranking in position `
in the private leaderboard, conditional on the final public leaderboard LT .

A model with fully-rational players is challenging for several reasons. First, it is possible
that pfinal1,i > 0 even if player i is ranked last in the public leaderboard (though unlikely).
That is, every player that has participated in the contest has a non-zero chance of
winning, regardless of their position in the public leaderboard. Hence, players must use
all the available information in the public leaderboard every time they decide whether
to play or not. Keeping track of the complete history of submissions, with over 15,000
submissions in each competition, is computationally intractable.17 In contrast to a
dynamic environment in which players perfectly observe their relative position, the
public leaderboard is just a noisy signal of the actual position of the players in the
contests. Without noise, i.e., the player with the highest public score at the terminal
history is the winner, players only need to keep track of the current highest public
score to make their investment decision, which leads to a low-dimensional state space.
In our setting, however, the state space is large because the relevant public history is
not summarized by a single number. To overcome this computational difficulty, we
assume that pfinal`,i > 0 for ` = 1, 2, 3 if and only if player i is among the three highest
scores in the final public leaderboard. In other words, we assume the final three highest
private scores are a permutation of final three highest public scores. This assumption is
motivated by Table A.2 in the Online Appendix, because in 76 percent of the contests

Players are given the option to select which two submissions will be evaluated by Kaggle to determine
the final standings. About 50 percent of the players do not make a choice, in which case Kaggle picks
the two largest public scores. Out of the 50 percent remaining that indeed choose, 70 percent choose
the two scores with the highest public score.

16This assumption can be easily relaxed with more computational power (time).
17For example, if we partition the set of public scores into 100 values, with 15,000 submissions the

number of possible terminal histories is of the order of 2300.
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we study, the winner is among the three highest public scores.

Small and Myopic Players

There are at least 15,000 submissions and thousands of players on average in each
contest. Fully rational players would take into account the effect of their submissions
on the strategy of the rival players. However, solving analytically a model with fully
rational players turns out to be extremely challenging. As a simplification, we assume
that players are small, i.e., they do not consider how their actions affect the incentives
to play of other players. This price-taking-like assumption is not unreasonable for our
application. Observation 6, partially justify this assumption.

Additionally to assuming that players are small, we make another simplification which
we will later relax. We assume that when players make the decision to play or to quit,
they expect more submissions in the future by rival players but not by themselves. In
other words, myopic players think this current opportunity to play will be their last
one. It is worth noting that under this assumption players might play multiple times,
however they think they will never have a future opportunity to play or in case they
do they will choose not to play. This means that myopic players are not sequentially
rational. Later on, in subsubsection 3.1.2, we analyze a model with sequentially rational
players.

We start the analysis under the small and myopic players assumptions, i.e., players that
do not consider the effect of their actions on the other players’ decision to play and also
do not account for the possibility of playing again in the future.

State Space and Incentives to Play

The relevant state space is defined by three sets. First, we define the set of (sorted)
vectors of the three largest public scores, Y = {y = (y1, y2, y3) ∈ [0, 1]3 : y1 ≥ y2 ≥ y3}.
Second, we define RS = {∅, 1, 2, 3, (1, 2), (1, 3), (2, 3)} to be the set of score ownership.
The final set is T = [0, 1] which represents the contest’s time. Notice that y ∈ Y and
t ∈ T are public information common to all players. Under the small-player assumption,
the relevant state for each player is characterized by s = (t, ri, y) ∈ S ≡ T ×RS × Y .
To be precise, s = (t, ri, y) ∈ S means that at time t player i owns the components of
vector y indicated by r. For example, (t, (1, 3), (0.6, 0.25, 0.1)) means that at time t,
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the player components one and three in vector y, i.e., the player owns two out of the
three highest public scores: 0.6 and 0.1.

The small-player assumption reduces the dimensionality of the state space, because
players care only about the three highest public scores and which one of them they
own. Also, although they do not observe the private scores, they are able to compute
the conditional distribution of private scores given the set of public scores. Because
prizes are allocated at the end of the contest, the payoff-relevant states are the final
states s ∈ {T} × RS × Y . We denote by π(s) the payoff of a player at state s.
Notice {π(s)}s∈{T}×RS×Y can be computed (only once) outside of the model. In vector
notation, we denote the vector of terminal payoffs by π. We consider a finite grid of m
values for the public scores, Y = {y1, ..., ym}. If a player of type θ decides to play and
send a new submission, the public score of that submission is distributed according to
qθ(k) = Pr(y = yk|θ), k = 1, ...,m. We adopt the following tie-breaking rule: The most
recent draws replace older values in the top three highest public scores.

Although players are small, they have beliefs over the number of future submissions
sent by their rivals. At time t, a player believes that with probability pt(n) the number
of rival submissions that will arrive before the end of the competition is n. Also, the
scores of those submissions are independently drawn from the distribution G, where
PrG(y = yk) = ∑

θ∈Θ
κ(θ)qθ(k). Furthermore, we assume that the belief about the number

of rival submissions that will arrive in the future follows a Poisson distribution of
parameter γ(T − t) so

pt(n) = [γ(T − t)]ne−γ(T−t)

n! . (1)

Notice that under this functional form, players believe that the expected number of
remaining rival’s submissions, γ(T − t), is proportional to the remaining time of the
contest. To derive the expected payoff of sending an additional submission we proceed
in two steps. First, we solve for the case in which a player thinks she is the last one to
play, i.e., pt(0) = 1, and then we solve for the the belief pt(n) given in Equation 1.

Denote by Bθ
t (s) the expected benefit of building a new submission for a player of type

θ at state s, when she thinks she is the last player sending a submission before the end
of the contest. For clarification, consider the following example. A player of type θ is
currently at a state s = (t, r = (1, 2), y = (y1, y2, y3)) and has an opportunity to play.
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If she plays and the new submission arrives before T (which happens with probability
1 − e−(T−t)λθ), the transition of the state depends on the score of the new submission
ỹ. The state (r, y) can transition to (r′, y′) where: r′ = (1, 2) and y′ = (y1, y2, y3)
when ỹ < y2; or r′ = (1, 2) and y′ = (y1, ỹ, y3) when y2 ≤ ỹ < y1; or r′ = (1, 2) and
y′ = (ỹ, y2, y3) when y1 ≤ ỹ. More generally, we can repeat these exercise for all states
s ∈ S and put all these transition probabilities in a |RS×Y|×|RS×Y| matrix denoted
by Ωθ. Each row of this matrix corresponds to the probability distribution over states
(r′, y′) starting from state (r, y), conditional on the arrival of a new submission. If the
new submission does not arrive, then there is no transition and the state remains (r, y).
In matrix notation, where each row is a different state, the expected benefit of sending
one extra submission is given by

Bθ
t = (1− e−(T−t)λθ)Ωθπ + e−(T−t)λθπ.

Consider a given state s. With probability (1 − e−(T−t)λθ) the new submission is built
before the end of the contest. The score of that submission (drawn from qθ) determines
the probability distribution over final payoffs. This is given by the s-row of the matrix
Ωθ. The expected payoff is computed as (Ωθ)s• ·π which corresponds to the dot-product
between the probability distribution over final states starting from state s and the payoff
of each terminal state. With probability e−(T−t)λθ the new submission is not finished in
time and therefore the final payoff for the player is given by πs (the transition matrix
is the identity matrix).18 A player chooses to plays if and only if the expected benefit
of playing net of the cost of building a submission is larger than the expected payoff of
not playing, i.e.,

Bθ
t − c ≥ π ⇐⇒ (1− e−(T−t)λθ)[Ωθ − I]π ≥ c. (2)

We can now easily incorporate into Equation 2 the belief pt(n) over the number of rival
submissions made after t. The final state does not depend on the order of submissions,
because payoffs are realized at the end of the competition,19 each player only cares
about their ownership at the final state. Because players myopically think that they
will not make another submission after the current one, we can replace the final payoff

18The matrix Ωθ depends only on the probability distribution qθ(·) and can be computed outside
the model.

19Except for ties, but we deal with this issue in the numerical implementation.
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by the expected payoff after n rival’s submissions and then let the agent decide to make
her last submission considering this new expected payoff. That is, from state s, there
is a probability distribution over S after n rival submissions (of scores drawn from the
distribution G) given by the s-th row of matrix Ω̂n, where Ω̂ is constructed similarly to
Ω but replacing qθ(·) by the mixture probability g(·). Instead of considering the payoff
π before the last play, the player considers the expected payoff Ω̂n

π with probability
pt(n). Hence, the player plays if and only if:

∞∑
n=0

(1− e−(T−t)λθ)[Ωθ − I]Ω̂n
πpt(n) ≥ c. (3)

Equation 3 is similar to Equation 2, except that now the final payoff depends on how
many submissions are made by rival players. Using the definition of pt(n), the definition
of the exponential of a matrix,20 and some manipulations, we obtain:

Γθ,t ≡ (1− e−(T−t)λθ)[Ωθ − I]eγ(T−t)[Ω̂−I]π ≥ c (4)

Equation 4 reflects the effect of the beliefs over future rival submissions on the decision
of a player to build an extra submission. Conditional on a state s = (t, r, y) there are
two effects driving the comparative statics on t: As the competition approaches its end,
on one hand a player has less incentives to make an extra submission because it is less
likely to finish building it before the end of the competition. On the other hand, it faces
fewer rival submissions, which gives her more incentives to send an extra submission
later on in the contest. The comparative statics on γ is intuitively clear and larger γ
gives less incentives to play. The number of rival submissions that arrive on average are
γ(T − t). Therefore, the larger γ, the larger the number of submissions of the rivals and
the state becomes less favorable for the player, hence the expected payoff decreases.
Finally, notice that for θ′ > θ we have that Ωθ′ �FOSD Ωθ, so better draws are more
likely given the player larger incentives to play.

20The exponential of a matrix A is defined by eA ≡
∑∞
n=0

An

n!
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3.1 Extensions

3.1.1 Flow Cost instead of Fixed Cost

Whether players pay a fixed cost or a flow cost to build a new submission has conse-
quences on incentives.21 In fact, if players pay a fixed cost, then conditional on (ri, y),
sending submissions at the beginning of the contest is relatively cheaper than sending
them towards the end of the contest, because new submissions are less likely to arrive
closer to the end of the contest. By paying a flow cost, players may be more incentivized
to play towards the end of the contest. If instead of paying a fixed cost to build new
submissions players pay a flow cost while working on the new submission, Equation 4
changes to

(1− e−(T−t)λ)[Ωθ − I]eγ(T−t)[Ω̂−I]π ≥ E[c], (5)

where

Expected cost ≡ E[c] =
∫ T−t

0
cτλe−λτdτ = c

λ

[
1− e−λ(T−t)(λ(T − t) + 1)

]
.

3.1.2 Forward Looking Small Players

Consider small but sequentially rational players. Each player action is either to continue
or quit participating in the contest. That is, players do not have the possibility of
waiting and then making submissions. They are either developing a submission or not
participating in the contest at all.22

Given that the length of the contest is finite, the game can be solved by backward
induction. At time T , no player has enough time to build a new submission. So the
value of reaching state s = (T, r, y) is simply V (s) = π(s). Let Vt be a S × 1 vector
indicating the value at each state s = (t, r, y). If the optimal decision at time t is to
quit participating in the contest, then the payoff is given by

V Quit
t = eγ(T−t)[Ω̂−I]π.

21This is discussed in Loury (1979) and Lee and Wilde (1980).
22This strong assumption is required for identification reasons, because we cannot distinguish

whether a player is working on a submission or waiting without working.
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If the optimal decision is to continue playing, the expected payoff (using flow cost) is:

V Play
t =

∫ T−t

0
λe−λτ

[
Ωθe

γ(τ−t)[Ω̂−I]Vt+τ − cτ
]
dτ

Then, we can solve by backward induction:

Vt = max
{
V Quit
t , V Play

t

}

Finally, one of the advantages of this simple formulation is its computational tractabil-
ity. As we discuss in the next section, several elements are estimated only once, which
makes fairly efficient to estimate the parameters λ and c.

4 Estimation

We estimate the privates of the model in two steps. First, we estimate a number of
primitives directly from the data. Second, using the estimates of the first step, we
estimate the remaining parameters using a likelihood function constructed based on
the model. We repeat this procedure for each contest.

The full set of parameters for a given contest include: i) the distribution of new
player arrival times, which we assume follow an exponential distribution with pa-
rameter µ, exp(µ); ii) the distribution of submission arrival times, which we assume
follow an exponential distribution with parameter λ, exp(λ); iii) the distribution of
private score conditional on public score, {H(·|ppublic)}ppublic∈[0,1], which we assume
is given by pprivate = α + βppublic + ε, with ε distributed according to a double ex-
ponential distribution; iv) the type-specific cumulative distribution of public scores,
Qθ : (0, 1) → [0, 1], which we assume is given by the standard normal distribution,
Qθ(x) = Φ

(
log(x/(1−x))−µθ

σθ

)
; v) the distribution of types, κ, which we assume is a dis-

crete distribution over the set of player types, Θ; vi) the time-specific distribution of the
number of submissions that will be made in the reminder of the contest, pt(n), which we
assume follow a Poisson distribution with parameter γ(T − t), pt(n) = [γ(T−t)]ne−γ(T−t)

n! ;
and, lastly, vii) the distribution of submission costs, which we assume has a support
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that is bounded above by 1 (i.e., the normalized value of the total prize money), has a
cumulative distribution function given by K(c;σ) = cσ (with σ > 0).

We estimate primitives i) through vi) in the first step, while vii) using the likelihood
function implied by the model. i), ii), and iii) are estimated using the maximum
likelihood estimators for µ, λ, and (α, β), respectively. We estimate iv) and v) using a
Gaussian mixture model that we estimate using the EM algorithm. The EM algorithm
estimates the k gaussian distributions (and their weights, κ(θk)) that best predict the
observed distribution of public scores. Throughout our empirical analysis we assume
that there are k = 4 player types. Lastly, for vi), we impose that γ must equal the
observed number of submissions in each contest (see Table 2), as a way of capturing
that γ is an equilibrium object.

The likelihood function implied by the model is based on the decision of a player to make
a new submission. Recall that a player chooses to make a new submission immediately
after the arrival of each of his submissions. A player facing state variables s chooses to
make a new submission at time t if and only if

Γθ,t(s) ≥ c (6)

where Γθ,t = (1 − e−(T−t)λθ)[Ωθ − I]eγ(T−t)[Ω̂−I]π is the vector of the net benefits of
making a new submission at time t for all posible states s (before deducting the cost of
making a submission) and c is the cost of a submission. Γθ,t depends only on primitives
estimated in the first step of the estimation, which simplifies the rest of the estimation.

Based on Equation 6, we obtain that a θ-type player facing state variables s plays at
time t with probability

Pr(play|s, t, θ) = K (Γθ,t(s)) .

Given that we do not observe the player’s type, we take the expectation with respect
to θ, which yields

Pr(play|s, t) =
∑
θ

κ(θ)K (Γθ,t(s)) ,

where κ(θ) is the probability of a player being of type θ.

The likelihood is constructed using tuples {(si, ti, t′i)}i∈N , where i a submission, si is the
vector of state variables at the moment of making the submission, ti is the submission
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time, and t′i is the arrival time of the next submission, which may or may not be
observed. If the next submission is observed, then ti < t′i ≤ T , if not, t′i > T . If the
new submission arrives at t′i ≤ T , then the player must have chosen to make a new
submission at ti, and the likelihood of the observation (si, ti, t′i) is given by l(si, ti, t′i) =
Pr(play|si, ti) · λe(−λ(t′i−ti)), where λe(−λ(t′i−ti)) is the density of the submission arrival
time. If we do not observe a new submission after the player’s decision at time t
(i.e., t′i > T ), then the likelihood of (si, ti, t′i > T ) is given by l(si, ti, t′i > T ) =
Pr(play|si, ti) · e(−λ(T−ti)) + 1 − Pr(play|si, ti), which considers both the events of i)
the player choosing to make a new submission at ti and the submission arriving after
the end of the contest; and ii) the event of the player choosing not to make a new
submission.

The log-likelihood function is then given by

L(δ) =
∑
i∈N

log l(si, ti, t′i),

where δ is the vector of structural parameters. We perform inference using the asymp-
totic distribution of the maximum likelihood estimator.

28



4.1 Model Estimates

µ SE λ SE σ SE logL(δ̂)/N N

hhp 2.54 0.0691 139.3308 0.8757 0.003 0.0001 -3.5141 25316
allstate-purchase-prediction-challenge 1.9117 0.0483 86.6572 0.5533 0.0033 0.0001 -3.0259 24526
higgs-boson 2.2081 0.0523 99.8622 0.528 0.0016 0.0001 -3.2443 35772
acquire-valued-shoppers-challenge 2.0347 0.0659 123.2493 0.7765 0.0012 0.0001 -3.5276 25195
liberty-mutual-fire-peril 2.3163 0.092 84.3712 0.6932 0.0035 0.0002 -3.1449 14812
datasciencebowl 2.0146 0.0622 62.7269 0.5101 0.0043 0.0002 -2.7226 15121
axa-driver-telematics-analysis 2.0942 0.0536 98.6269 0.5193 0.0015 0.0001 -3.2953 36065
predict-west-nile-virus 2.114 0.0585 81.9751 0.4736 0.0013 0.0001 -3.1107 29965
crowdflower-search-relevance 2.0708 0.0569 68.1422 0.447 0.0024 0.0001 -2.8501 23244
caterpillar-tube-pricing 3.2151 0.0884 61.5938 0.3794 0.0024 0.0001 -2.7909 26360
liberty-mutual-group-property-inspection-prediction 2.8362 0.06 63.4536 0.2963 0.0023 0.0001 -2.8277 45875
coupon-purchase-prediction 2.1102 0.0643 66.0059 0.4856 0.0026 0.0001 -2.8118 18477
springleaf-marketing-response 2.4308 0.0515 64.4029 0.3243 0.0027 0.0001 -2.7984 39444
homesite-quote-conversion 2.2237 0.0529 81.1871 0.4257 0.003 0.0001 -3.0649 36368
prudential-life-insurance-assessment 2.1082 0.0412 72.0748 0.3379 0.0017 0.0001 -2.9028 45490
expedia-hotel-recommendations 2.2155 0.0499 40.0034 0.2655 0.0088 0.0002 -2.2063 22709

Table 6: Model Estimates (MLE), by Contest.

Note: The model is estimated separately for each contest. Asymptotic standard errors are reported in
the columns that are labeled ‘SE.’

Table 6 presents the maximum likelihood estimates for the empirical model. The model
was estimated separately for each contest. Column 1 shows the estimates for µ, the
Poisson rate at which teams enter the competitions. The estimates suggest that the
average entry time (i.e., 1/µ) ranges between 0.31 and 0.52 (where the contest time
is normalized 1). Column 3 presents the estimates for λ, the Poisson rate at which
submissions are completed. In line with Table 2, the estimates suggest that the average
time between submissions ranges between 0.007 and 0.024. Column 5 presents estimates
for the coefficients governing the distribution of submission costs, σ. The distribution
functional form implies that the expected cost of making a submission is given by σ/(1+
σ). The estimates for σ suggest that the expected submission cost ranges between 0.001
and 0.008, where these submissions costs are measured relative to the total monetary
rewards of each contest. Table A.4 in the Online Appendix presents the EM algorithm
estimates for the type-specific distributions of scores; Table A.5 in the Online Appendix
presents estimates for the distribution of private scores conditional on public scores.
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With respect to how well the model fits the data, Figure 5 plots the actual number of
submissions against the number of submissions that are predicted by the model. The
predicted number of submissions are computed based on 2,000 simulations for each
contest. The simulations make use of the estimates of the model and take the number
of teams that participate in each contest as given. The contest participation predicted
by the model is the average number of submissions across all of the simulations. The
correlation between the actual and the predicted number of submissions is 0.72. The
figure shows that the model does not systematically over or under predict participation.
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Figure 5: Number of Submissions Predicted by the Model Versus Actual Number of
Submissions

Note: An observation is a contest. The coefficient of correlation between the actual and predicted
number of submissions is 0.6.

5 Evaluating the Impact of Contest Design

In this section, we study how a series of counterfactual contest designs affect partic-
ipation and contest outcomes. The counterfactual experiments vary the information
disclosed to participants, the allocation of prizes, and impose restrictions to the num-
ber of participants.
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5.1 Information Disclosure

We first study the role of information disclosure. As explained previously, the evaluation
in the baseline case is based on two datasets. The contest designer chooses the size of
these datasets—e.g., 60 percent of test data to generate public scores and 40 percent
to generate private scores—and also which scores to disclose. In the baseline contest
design, the contest designer only discloses the public scores but the final standings are
computed using the private scores.

We consider two alternative designs. In one counterfactual, instead of publicly disclosing
the leaderboard of public scores, the contest designer provides private feedback to each
player but does not disclose a public leaderboard. That is, players observe the public
score of their submissions but not the public scores of other players. In a second
counterfactual, we explore the effect of eliminating the noise that generates an imperfect
correlation between private and public scores. We simulate a contest where there is no
noise between these scores (i.e., the public score equals the private score) and prizes
are allocated according to the final standings of the public leaderboard. This second
contest design can be thought of a contest where there is only one test dataset that
generates both the private and public scores.

Private Feedback, no Public Leaderboard

Consider the counterfactual scenario where the contest designer does not disclose the
leaderboard but players are privately informed about their public scores. Note that
payoffs are realized only at the end of the contest and no information is disclosed
other than the players’ past submissions. Also, importantly, submissions scores are
independent conditional on arriving.

Suppose that a player of type θ makes a submission. Then, starting from state s,
the probability distribution over states is given by the s-th row of the matrix Ωθ. If
after a player sends a submission, a rival player makes a submission, the probability
distribution over states is given by Ω̂Ωθ. Since submission scores are independent,
the distribution is the same regardless of who plays first because a state is completely
defined by a history of submission scores. In other words, the matrices Ωθ and Ω̂
commute.
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Consider an information set at time t for a player of type θ, denoted by Iθt . Because the
leaderboard is not visible, Iθt only contains the history of scores of this particular player.
In fact, we can restrict attention to the player’s largest three scores. Let s = (t, r, y)
be the state at time t, constructed by using only the scores of the player up to time
t (contained in the history It), ignoring the past submissions of the rivals. From the
commutativity of the transition matrices (equivalently, the stationary of distributions),
the decision problem is equivalent to the decision of making a submission at time t = 0,
starting from state s, in a contest of length T − t, with beliefs over the number of rivals
submissions equal to pT (n). This is, we look at the row corresponding to state s in the
following vector inequality:

(1− e−(T−t)λθ)[Ω− I]eγT [Ω̂−I]π ≥ c

Incentives to make a submission change without disclosure. With the public leader-
board, each player has states where she would choose not to play and other states
where she would choose to play. When not informed about the state of the contest,
players cannot condition their strategy on the contest state and instead choose whether
to play by computing the expected payoff of making a submission across all feasible
states. A player therefore may choose to make a submission in a state where she would
not make submission if she knew the state and vice versa. This possibility arises be-
cause the benefits of playing in favorable states “subsidize” the losses of playing in less
favorable states. Depending on the strength of these subsidies—which depend on the
player’s type—a player may end up playing in a larger or smaller set of states when
compared to the case when the public leaderboard is disclosed. The fact that concealing
the public leaderboard may increase or decrease participation is illustrated in Example
1 below.

Figure 6 shows the impact of concealing the public leaderboard and instead only pro-
viding private feedback to the players on the number of submissions.23 The effects are
measured in percentage points and relative to the number of submissions in the baseline
contest design (i.e., contest with public leaderboard). The figure shows heterogeneous
effects across contests, which is not surprising given the previous discussion and the

23See Figure A.2 in the Online Appendix for the impact of eliminating the public leaderboard on
the maximum score.
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analysis in Example 1. Hiding the public leaderboard can decrease the number of sub-
missions by as much as 40 percent (datasciencebowl) while increase it by almost 60
percent (expedia-hotel-recommendations). The figure shows that the overall number of
submissions would increase by about 11 percent if the contest designer chose to hide the
public leaderboard in all contests. This increase in the number of submissions translates
into an increase in median maximum score.

Overall
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Figure 6: Change in the Number of Submissions When Comparing the Case without
Leaderboard Versus the Case with Leaderboard (Baseline)

Note: An observation is a contest. The brackets indicate a 95 percent confidence interval.

Example 1 (Disclosure of Information and Participation ). Consider an agent playing
against Nature. Nature draws a high score with probability p and a low score with
probability 1 − p. An agent of type θ ∈ [0, 1] draws a high score with probability θ and
low score with probability 1 − θ. The agent’s cost of building a submission is c ∈ [0, 1]
and we assume that ties are broken in favor of the agent with probability 1

2 . The agent
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receives π = 1 by winning the contest.

There are two scenarios illustrated in Figure 7. A contest with a public leaderboard,
and one where the draw of nature is unobserved by the agent (i.e., no leaderboard).

Nature
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1
2 θ − c
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0

Not play

H[p]

Agent

1
2 (1− θ) + θ − c

Play

0

Not play

L[1− p]

(a) Public Leaderboard

Nature

1
2 θ − c

Play

0

Not play

H[p]

1
2 (1− θ) + θ − c

Play

0

Not play

L[1− p]

Agent

(b) No Information Disclosure

Figure 7: Left Panel Shows the Case of a Competition with Public Leaderboard. The
Right Panel Shows the Game with Private Feedback but no Leaderboard .

Consider first a contest with a public leaderboard depicted in Figure 7 (Panel A). In
this case, after observing a high score the player plays if and only if 1

2θ ≥ c or θ >
2c; after observing a low score the player plays if and only if 1

2(1 − θ) + θ > c or
θ > 2c − 1. Consider now the a contest without a public leaderboard but with private
feedback, depicted in Figure 7 (Panel B). The agent does not observe the draw of Nature
but knows that high scores are drawn with probability p. The expected payoff from playing
is 1

2pθ + 1
2(1− p)[θ + 1]− c, so the player plays if and only if θ ≥ 2c− (1− p).

0 2c− 1 2c− (1− p) 2c
θ

Leaderboard

No Leaderboard

not play play if L play if L or H

not play play

Figure 8: The effect of information disclosure on participation.
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Figure 8 shows the regions where players are willing to pay to build a new submission.
The figure shows that displaying the leaderboard has ambiguous effects on participation.
With a public leaderboard, the player plays only if nature drew a low score and θ ∈
[2c − 1, 2c − (1 − p)]. With private feedback and no public leaderboard, however, a
player of type θ ∈ [2c − 1, 2c − (1 − p)] would not play. Thus, for players of type
θ ∈ [2c−1, 2c−(1−p)] the public leaderboard encourages participation. On the contrary,
when a player is of type θ ∈ [2c− (1−p), 2c] and the public leaderboard is displayed, the
player only plays if nature drew a low score. However, without a leaderboard an agent of
this type would always play. Hence, displaying the leaderboard encourages participation
for players of type θ ∈ [2c− 1, 2c− (1− p)].

This example shows that displaying the leaderboard may have an ambiguous effect on
overall participation: it depends on how likely is an agent to draw high scores (θ), the
cost of drawing, and how likely are rivals draw high scores (p). The expected partici-
pation with a public leaderboard is (1 − p)[F (2c) − F (2c − 1)] + 1 − F (2c). Without a
public leaderboard the expected participation is 1−F (2c− (1−p)). Hence, there is more
participation on average with a public leaderboard if and only if

F (p2c+ (1− p)(2c− 1)) ≥ pF (2c) + (1− p)F (2c− 1),

which holds if the distribution of types, F , is concave. �

Perfect Correlation between Public and Private Scores

A second counterfactual design that manipulates the amount of information disclosed
to participants is the contest design that eliminates the noise that causes the correlation
between public and private scores to be imperfect. Eliminating this noise would require
the contest designer to use 100 percent of the test data to compute the public scores,
and use the public scores to determine the contest winner.

The imperfect correlation between scores distorts participation incentives as players
are never certain about how well they are performing in the contest. On the one hand,
the imperfect correlation encourages participants because all players have a chance at
winning the contest, but on the other hand, it discourages players at the very top
because leading the public leaderboard is not sufficient to win the contest.24

24It is also worth mentioning that computing the public score with 100 percent of the test data has
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Figure 9 shows the impact of eliminating the noise between the public and private scores
(i.e., public score equals private score) on the number of submissions. The effects are
measured in percentage points and relative to the number of submissions in the baseline
contest design (i.e., contest with public leaderboard and noise). The figure shows that
the number of submissions decreases by about 2.7 percent on average when eliminating
the noise but with heterogeneous effects. This decrease in the number of submissions
translates into a decrease in the average maximum score (see Figure A.3 in the Online
Appendix).

Noteworthy is the fact that both counterfactual designs that we consider in this sub-
section provide consistent results. Hiding the public leaderboard can be thought of as
an extremely noisy public leaderboard, which is the opposite case of allocating prizes
according to the final standings of the public leaderboard (an extremely informative
public leaderboard). In both comparisons, we find that more noise on average increases
participation in economically significant magnitudes.

the potential drawback that participants may attempt to engage in overfitting and submit solutions
that maximize the public score but are not robust outside of the test data. We abstract away from
this potential effect.
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Figure 9: Change in the Number of Submissions When Comparing the Case Without
Leaderboard Noise Versus the Case with Leaderboard Noise (Baseline)

Note: An observation is a contest. The brackets indicate a 95 percent confidence interval.

5.2 Number of Prizes

We next analyze the role of the allocation of prizes on contest outcomes. Instead of
allocating prizes to the j-highest ranked players, we simulate a contest that allocates a
single prize to the winner, keeping the total award money fixed. The optimal allocation
of prizes has been explored in several articles, including Lazear and Rosen (1979), Taylor
(1995), Moldovanu and Sela (2001), Che and Gale (2003), Sisak (2009), Olszewski and
Siegel (2015), Kireyev (2016), Xiao (2016), Strack (2016), and Balafoutas et al. (2017).
The literature has found that the shape of the cost function plays an important role in
determining the optimal prize allocation when the contest designer’s goal is to maximize
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aggregate effort.

Figure 10 shows the impact of awarding a single prize on the number of submissions.25

The effects are measured in percentage points and relative to the number of submissions
in the baseline contest design (i.e., contest with public leaderboard and three prizes).
Our results show that changing the allocation of prizes has a small and statistically
insignificant overall effect on participation. While the results are heterogeneous across
contests, the magnitude of the effect is less than 1 percent (in absolute value) in all
but one contest. To explain this result, notice that the first order effect on incentives is
whether or not a player is ranked among the first three players at the end of the contest.
Conditional on that event, the effect of allocating one or three prizes is small because of
the uncertainty created by the imperfect correlation between public and private scores.

25Figure A.4 in the Online Appendix displays the impact of offering a single prize on the maximum
score.
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Figure 10: Change in the Number of Submissions When Comparing the Case with
One Prize Versus the Case with Three Prizes (Baseline)

Note: An observation is a contest. The brackets indicate a 95 percent confidence interval.

5.3 Limiting the Number of Participants

Lastly, we study the role of limiting participation on contest outcomes. The literature
has isolated two effects caused by limiting participation. On the one hand, limiting
participation reduces the number of participants exerting effort (in our case, sending
submissions). On the other hand, with fewer players, the marginal benefit of effort
increases as players face less competition. Whether the effect on the effort of players
compensates for the reduction in the number of players is ex-ante ambiguous. Some
articles have argued that limiting participation may be optimal (see Che and Gale
2003; Kireyev 2016; Taylor 1995) although these results are generally based on models
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Figure 11: Change in the Number of Submissions When Comparing the Case of a
Restricted Participation Contest with 90 Percent of the Teams Versus the Case with
the Observed Number of Teams (Baseline)

Note: An observation is a contest. The brackets indicate a 95 percent confidence interval.
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of static contests. We contribute to the literature by shedding light on the impact of
limiting participation in a dynamic environment with heterogeneous players.

We first consider the case where we reduce the number of participants in each contest
by 10 percent, keeping the distribution of player types unchanged. Figure 11 shows
how participation changes for each contest with such intervention.26 The effects are
measured in percentage points and relative to the number of submissions in the baseline
contest design (i.e., contest with public leaderboard and full participation). We find
that the increase in individual incentives caused by reduced competition does not fully
compensate for the reduction in the number of players, leading to an average decrease
in the total number of submissions of 8.7 percent.

We also consider the case when we decrease the number of participants in each contest
by 10 percent but change the distribution of player types to be composed by “high
types” or experts only.27 This exercise is motivated by the fact that Kaggle in some
instances does restrict competitions to more experienced players. We present the results
in Figure A.6 in the Online Appendix and again find that reducing the number of
participants leads to an average decrease in the number of submissions. In this case,
however, the average decrease in the number of submissions exceeds 10 percent because
of how the change in the composition of players discourages participants.

5.4 Robustness

With respect to the robustness of the results presented in this section, we study how the
contest design effects that we estimate change when perturbing the model. In particular,
we consider how the results change when using the specification where players pay a flow
cost rather than a fixed cost when building a submission (see the discussion in Section
3.1).28 It has been argued in the literature that whether players pay a flow or fixed cost

26Figure A.5 in the Online Appendix displays the impact of limited participation on the maximum
score.

27We define “high type” as the player type with the greatest µ+ 2σ value (see the definition of Qθ
in Section 4).

28The estimates of the flow cost specification of the model are presented in Table A.6 in the Online
Appendix. The fit of the model is slightly worse when using the flow cost specification.
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matters for players’ incentives (see for instance Loury 1979 and Lee and Wilde 1980).
Table A.7 in the Online Appendix shows the results of each of the counterfactuals in this
section for both the fixed cost and flow cost specifications. The results are qualitatively
identical throughout.

6 Discussion

We study dynamic prediction contests and explore the effect of contest design on par-
ticipation incentives and contest outcomes. We provide two main contributions.

Our first contribution is to introduce a novel and tractable empirical model—i.e., a
model with a state space that is computationally manageable—to study a setting where
players can submit multiple submissions throughout the contest. The contest designer
displays, in real time, a public leaderboard in which participants observe a noisy signal
of their position and use it to decide whether to continue participating or to quit the
contest. Our model relies on various simplifications, which are motivated by the empir-
ical evidence, but is general enough to be applied to other settings. The computational
tractability is achieved by assuming that players are small, i.e., they do not consider the
effect of their actions on rival player’s strategies. However, players form beliefs, which
are correct in equilibrium, about the future number of submissions in the contest. In
our framework, the expected payoff for set of beliefs about the number of rivals’ sub-
missions can be computed efficiently by computing the exponential of a matrix. It is
this tractability that allow us to easily estimate the parameters of the model and to
compute outcomes under counterfactual contest designs.

Our second contribution is to shed light on contest design in a dynamic setting with het-
erogeneous players. We simulate several counterfactual scenarios to explore alternative
contest designs. In particular, we study the role of information disclosure, allocation of
prizes, and limited participation in shaping the player’s incentives. Although we find
heterogeneity in the results, changes in information disclosure induce the greatest par-
ticipation response. Specifically, we find that only providing private feedback instead of
publicly disclosing the leaderboard would increase the average number of submissions
in a contest by 11 percent.
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Name of the Total Number of Teams Start Date Deadline
Competition Reward Submissions
Predict Grant Applications 5,000 2,800 204 12/13/2010 02/20/2011
RTA Freeway Travel Time Prediction 10,000 3,129 356 11/23/2010 02/13/2011
Deloitte/FIDE Chess Rating Challenge 10,000 1,563 181 02/07/2011 05/04/2011
Heritage Health Prize 500,000 25,316 1,353 04/04/2011 04/04/2013
Wikipedia’s Participation Challenge 10,000 1,020 90 06/28/2011 09/20/2011
Allstate Claim Prediction Challenge 10,000 1,278 102 07/13/2011 10/12/2011
dunnhumby’s Shopper Challenge 10,000 1,872 277 07/29/2011 09/30/2011
Give Me Some Credit 5,000 7,730 925 09/19/2011 12/15/2011
Don’t Get Kicked! 10,000 7,261 570 09/30/2011 01/05/2012
Algorithmic Trading Challenge 10,000 1,406 111 11/11/2011 01/08/2012
What Do You Know? 5,000 1,747 239 11/18/2011 02/29/2012
Photo Quality Prediction 5,000 1,356 200 10/29/2011 11/20/2011
KDD Cup 2012, Track 1 8,000 13,076 657 02/20/2012 06/01/2012
KDD Cup 2012, Track 2 8,000 5,276 163 02/20/2012 06/01/2012
Predicting a Biological Response 20,000 8,837 699 03/16/2012 06/15/2012
Online Product Sales 22,500 3,755 363 05/04/2012 07/03/2012
EMI Music Data Science Hackathon - July 21st - 24 hours 10,000 1,319 133 07/21/2012 07/22/2012
Belkin Energy Disaggregation Competition 25,000 1,526 165 07/02/2013 10/30/2013
Merck Molecular Activity Challenge 40,000 2,979 236 08/16/2012 10/16/2012
U.S. Census Return Rate Challenge 25,000 2,666 243 08/31/2012 11/11/2012
Amazon.com - Employee Access Challenge 5,000 16,872 1,687 05/29/2013 07/31/2013
The Marinexplore and Cornell University Whale Detection Challenge 10,000 3,293 245 02/08/2013 04/08/2013
See Click Predict Fix - Hackathon 1,000 1,051 80 09/28/2013 09/29/2013
KDD Cup 2013 - Author Disambiguation Challenge (Track 2) 7,500 2,304 237 04/19/2013 06/12/2013
Influencers in Social Networks 2,350 2,105 132 04/13/2013 04/14/2013
Personalize Expedia Hotel Searches - ICDM 2013 25,000 3,502 337 09/03/2013 11/04/2013
StumbleUpon Evergreen Classification Challenge 5,000 7,495 625 08/16/2013 10/31/2013
Personalized Web Search Challenge 9,000 3,570 194 10/11/2013 01/10/2014
See Click Predict Fix 4,000 5,570 532 09/29/2013 11/27/2013
Allstate Purchase Prediction Challenge 50,000 24,526 1,568 02/18/2014 05/19/2014
Higgs Boson Machine Learning Challenge 13,000 35,772 1,785 05/12/2014 09/15/2014
Acquire Valued Shoppers Challenge 30,000 25,195 952 04/10/2014 07/14/2014
The Hunt for Prohibited Content 25,000 4,992 285 06/24/2014 08/31/2014
Liberty Mutual Group - Fire Peril Loss Cost 25,000 14,812 634 07/08/2014 09/02/2014
Tradeshift Text Classification 5,000 5,648 375 10/02/2014 11/10/2014
Driver Telematics Analysis 30,000 36,065 1,528 12/15/2014 03/16/2015
Diabetic Retinopathy Detection 100,000 7,002 661 02/17/2015 07/27/2015
Click-Through Rate Prediction 15,000 31,015 1,604 11/18/2014 02/09/2015
Otto Group Product Classification Challenge 10,000 43,525 3,514 03/17/2015 05/18/2015
Crowdflower Search Results Relevance 20,000 23,244 1,326 05/11/2015 07/06/2015
Avito Context Ad Clicks 20,000 5,949 414 06/02/2015 07/28/2015
ICDM 2015: Drawbridge Cross-Device Connections 10,000 2,355 340 06/01/2015 08/24/2015
Caterpillar Tube Pricing 30,000 26,360 1,323 06/29/2015 08/31/2015
Liberty Mutual Group: Property Inspection Prediction 25,000 45,875 2,236 07/06/2015 08/28/2015
Coupon Purchase Prediction 50,000 18,477 1,076 07/16/2015 09/30/2015
Springleaf Marketing Response 100,000 39,444 2,226 08/14/2015 10/19/2015
Truly Native? 10,000 3,223 274 08/06/2015 10/14/2015
Homesite Quote Conversion 20,000 36,368 1,764 11/09/2015 02/08/2016
Prudential Life Insurance Assessment 30,000 45,490 2,619 11/23/2015 02/15/2016
BNP Paribas Cardif Claims Management 30,000 54,516 2,926 02/03/2016 04/18/2016
Home Depot Product Search Relevance 40,000 35,619 2,125 01/18/2016 04/25/2016
Santander Customer Satisfaction 60,000 93,559 5,123 03/02/2016 05/02/2016
Expedia Hotel Recommendations 25,000 22,709 1,974 04/15/2016 06/10/2016
Avito Duplicate Ads Detection 20,000 8,153 548 05/06/2016 07/11/2016
Draper Satellite Image Chronology 75,000 2,734 401 04/29/2016 06/27/2016

Table A.1: Summary of the Competitions in the Data (Full List)

Note: The table only considers submissions that received a score. The total reward is measured in US
dollars at the moment of the competition. ii



Public Ranking Cumulative
of Winner Frequency Probability Probability

1 27 49.09 49.09
2 12 21.82 70.91
3 3 5.45 76.36
4 6 10.91 87.27
5 1 1.82 89.09
6 2 3.64 92.73
11 3 5.45 98.18
54 1 1.82 100.00

Table A.2: Public Leaderboard Ranking of Competition Winners

Number Cumulative
of Competitions Frequency Probability Probability

1 23,443 71.75 71.75
2 4,577 14.01 85.76
3 1,861 5.70 91.46
4 903 2.76 94.22

5 or more 1,887 5.78 100.00

Table A.3: Number of Competitions by User
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α SE β SE N

hhp 0.0022 0.0717 1.0025 0.0737 25316
allstate-purchase-prediction-challenge 0.0005 0.0197 1.0043 0.0221 24526
higgs-boson -0.0002 0.0183 1.0168 0.0224 35772
acquire-valued-shoppers-challenge -0.0139 0.033 1.0105 0.043 25195
liberty-mutual-fire-peril 0.044 0.0449 0.9083 0.054 14812
datasciencebowl 0.0011 0.0562 0.9987 0.0606 15121
axa-driver-telematics-analysis -0.0019 0.0179 1.0019 0.0253 36065
predict-west-nile-virus 0.0237 0.0444 0.9756 0.0548 29965
crowdflower-search-relevance 0.0174 0.0362 0.986 0.0426 23244
caterpillar-tube-pricing -0.014 0.3918 1.014 0.3929 26360
liberty-mutual-group-property-inspection-prediction 0.0061 0.0383 0.9961 0.0407 45875
coupon-purchase-prediction 0.033 0.0134 0.9022 0.0279 18477
springleaf-marketing-response 0.0092 0.052 0.9894 0.0553 39444
homesite-quote-conversion 0.0028 0.0401 0.997 0.0417 36368
prudential-life-insurance-assessment 0.0092 0.042 0.9933 0.0447 45490
expedia-hotel-recommendations 0.0006 0.019 0.9983 0.0269 22709

Table A.5: Maximum Likelihood Estimates of the Distribution of Private Scores
Conditional on Public Scores, by Contest. The Conditional Distribution is Assumed
to be Given by pprivate = α + βppublic + ε, with ε Distributed According to a Double
Exponential Distribution.

Note: The model is estimated separately for each contest. Asymptotic standard errors are reported in
the columns that are labeled ‘SE.’
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µ SE λ SE σ SE logL(δ̂)/N N

hhp 2.54 0.0691 139.3308 0.8757 0.0027 0.0001 -3.4837 25316
allstate-purchase-prediction-challenge 1.9117 0.0483 86.6572 0.5533 0.0028 0.0001 -3.0087 24526
higgs-boson 2.2081 0.0523 99.8622 0.528 0.0017 0.0001 -3.234 35772
acquire-valued-shoppers-challenge 2.0347 0.0659 123.2493 0.7765 0.0014 0.0001 -3.5241 25195
liberty-mutual-fire-peril 2.3163 0.092 84.3712 0.6932 0.0024 0.0002 -3.0775 14812
datasciencebowl 2.0146 0.0622 62.7269 0.5101 0.0028 0.0002 -2.693 15121
axa-driver-telematics-analysis 2.0942 0.0536 98.6269 0.5193 0.0015 0.0001 -3.2928 36065
predict-west-nile-virus 2.114 0.0585 81.9751 0.4736 0.001 0.0001 -3.1037 29965
crowdflower-search-relevance 2.0708 0.0569 68.1422 0.447 0.0023 0.0001 -2.7544 23244
caterpillar-tube-pricing 3.2151 0.0884 61.5938 0.3794 0.0019 0.0001 -2.7789 26360
liberty-mutual-group-property-inspection-prediction 2.8362 0.06 63.4536 0.2963 0.0018 0.0001 -2.8166 45875
coupon-purchase-prediction 2.1102 0.0643 66.0059 0.4856 0.0025 0.0001 -2.7249 18477
springleaf-marketing-response 2.4308 0.0515 64.4029 0.3243 0.0023 0.0001 -2.7805 39444
homesite-quote-conversion 2.2237 0.0529 81.1871 0.4257 0.0021 0.0001 -3.0516 36368
prudential-life-insurance-assessment 2.1082 0.0412 72.0748 0.3379 0.0019 0.0001 -2.9009 45490
expedia-hotel-recommendations 2.2155 0.0499 40.0034 0.2655 0.0049 0.0003 -1.9312 22709

Table A.6: Maximum Likelihood Estimates for the Flow Cost Specification of the
Model, by Contest.

Note: The model is estimated separately for each contest. Asymptotic standard errors are reported in
the columns that are labeled ‘SE.’
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Case Fixed cost Flow cost
No leaderboard 11.00 12.83

(9.23,12.74) (10.95,14.75)
Single prize 0.13 -0.06

(-0.01,0.27) (-0.19,0.07)
No noise -2.69 -2.60

(-3.20,-2.19) (-3.10,-2.11)
Limited participation -8.69 -8.80

(-8.91,-8.46) (-9.01,-8.58)
Experts -12.66 -12.40

(-13.37,-11.95) (-13.12,-11.67)

Table A.7: Comparing the Effects of Contest Design on Participation by Model Specifi-
cation. The Participation Effects of Counterfactual Designs are Measured in Percentage
Points Relative to the Baseline Contest Design.

Note: The table includes estimates for all contests except for the Santander Customer Satisfaction
contest. Bootstrapped 95 percent confidence intervals in parenthesis.
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Figure A.2: Change in the Maximum Score when Comparing the Case without Leader-
board Versus the Case with Leaderboard (Baseline)

Note: An observation is a contest. The brackets indicate a 95 percent confidence interval.
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Figure A.3: Change in the Maximum Score when Comparing the Case without Leader-
board Noise Versus the Case with Leaderboard Noise (Baseline)

Note: An observation is a contest. The brackets indicate a 95 percent confidence interval.
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Figure A.4: Change in the Maximum Score when Comparing the Case with One Prize
Versus the Case with Three Prizes (Baseline)

Note: An observation is a contest. The brackets indicate a 95 percent confidence interval.
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Figure A.5: Change in the Maximum Score when Comparing the Case of a Restricted
Participation Contest with 90 Percent of the Teams Versus the Case with the Observed
Number of Teams (Baseline)

Note: An observation is a contest. The brackets indicate a 95 percent confidence interval.
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Figure A.6: Change in the Number of Submissions when Comparing the Case of a
Restricted Participation Contest with 90 Percent of the Teams—All of Them of the
Highest Player Type—Versus the Case with the Observed Number of Teams (Baseline)

Note: An observation is a contest. The brackets indicate a 95 percent confidence interval.
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Figure A.7: Change in the Maximum Score when Comparing the Case of a Restricted
Participation Contest with 90 Percent of the Teams—All of Them of the Highest Player
Type—Versus the Case with the Observed Number of Teams (Baseline)

Note: An observation is a contest. The brackets indicate a 95 percent confidence interval.
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An Intuition for Prizes

At a given state s, a player is considering to make a new submission. The expected
payoff of making the submission, when the player think this is the last time she is playing
but there will arrive n submissions from rival players after she makes her submission is

λ
k∑
i=1

ViPi(n|s)

where λ is the probability that the submission arrives before the end of the contest, Vi
is the prize that a player gets when finishes ranked in the i-th position and Pi(n|s) is
the probability of finishing in position i, conditional on the current state s, given that
there will be n future rival submissions before the end of the contest.

A player makes a new submission when this benefit is above the cost. Therefore, the
incentive to play depends on the distribution of prizes. Suppose that ∑k

i=1 Vi = V , so
what matters for incentives is

k∑
i=1

αiPi(n|s),

where αi ∈ [0, 1], ∑k
i=1 αi = 1, which is equivalent to

P1 +
k∑
i=2

αi[Pi(n|s)− P1(n|s)].

The incentive to participate with k prizes compared to a single prize for the winner
then is larger when

k∑
i=2

αi[Pi(n|s)− P1(n|s)] > 0.

The difference in probability in our model depends on several pieces: (1) the distribution
of types; (2) the number of players expected to arrive in the future; (3) the current state.
Therefore, given multiple prizes may encourage or discourage participation. Notice,
however, when |Pi(n|s) − P1(n|s)| is small the effect on incentives is also small. For
this reason, the effect of one versus multiple prizes is not (empirically) very large.
This difference is smaller when n is large, so we expect a small effect of prizes at the
beginning of the contest and a larger effect towards the end of the contest, conditional
on the state.

xv
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