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Abstract

When machine-learning algorithms are used in high-stakes decisions, we want to ensure that

their deployment leads to fair and equitable outcomes. This concern has motivated a fast-

growing literature that focuses on diagnosing and addressing disparities in machine predictions.

However, many machine predictions are deployed to assist in decisions where a human decision-

maker retains the ultimate decision authority. In this article, we therefore consider in a formal

model and in a lab experiment how properties of machine predictions affect the resulting human

decisions. In our formal model of statistical decision-making, we show that the inclusion of

a biased human decision-maker can revert common relationships between the structure of the

algorithm and the qualities of resulting decisions. Specifically, we document that excluding

information about protected groups from the prediction may fail to reduce, and may even

increase, ultimate disparities. In the lab experiment, we demonstrate how predictions informed

by gender-specific information can reduce average gender disparities in decisions. While our

concrete theoretical results rely on specific assumptions about the data, algorithm, and decision-

maker, and the experiment focuses on a particular prediction task, our findings show more

broadly that any study of critical properties of complex decision systems, such as the fairness

of machine-assisted human decisions, should go beyond focusing on the underlying algorithmic

predictions in isolation.
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1 Introduction

When we analyze the properties of machine-learning predictions, we often consider settings in which

predictions are automatically translated into decisions. In this article, we instead consider how

properties of a machine-learning algorithm affect a human decision-maker’s choices that take these

predictions as an input. Focusing on a measure of disparity with respect to the resulting decisions,

we document cases in which the interaction of a biased decision-maker with a machine-learning

algorithm alters usual trade-offs between fairness and accuracy.

Machine-learning tools are increasingly used in high-stakes decisions. Algorithms that predict

recidivism are employed in pre-trial bail decisions. In medicine, machine-learning predictions are

used to make testing decisions. In hiring, predictive algorithms screen applicants in order to make

interview decisions. Lenders use sophisticated statistical models to make default predictions that

underlie credit approval decisions.

When machines are used in such high-risk contexts, we often care about their properties beyond

accuracy. A growing literature specifically studies the fairness properties of machine decisions. In

medical applications we may take special interest in when an algorithm errs, examining the incidence

of false positives and false negatives (Mullainathan and Obermeyer, 2019). In decisions subject to

heightened legal oversight such as hiring decisions, we may care about differentiated treatment of

or impact on legally designated protected classes (Raghavan et al., 2020). Chouldechova (2016)

and Kleinberg et al. (2016) study how different fairness criteria apply to machine classifications.

Typically, fairness properties of algorithmic decisions are analyzed as if the machine predictions

were implemented directly. But in many cases machine predictions may not be implemented auto-

matically, and instead inform a human decision-maker who has decision-making authority. This is

the case for recommender systems or decision support systems. The human is sometimes considered

vital in these systems due to their domain knowledge (Lawrence et al., 2006), which encompasses a

human decision-maker’s intuition and understanding of a problem as well as any additional infor-

mation they may observe. We may also require that a human make the final decision in a system

as a matter of accountability or comfort. In fact, the recent proposal of the European Union for

the regulation of artificial intelligence, the most comprehensive and ambitious proposal for the reg-

ulation of artificial intelligence to date, requires that humans retain authority when algorithms are

used for decision-making in high-risk domains (European Commission, 2021).

In this article, we use a formal model and a lab experiment to ask how questions around fairness

and bias play out when machine predictions support rather than replace human decisions, and

ask how incorporating a human decision-maker impacts the relationship between the structure of

(machine) predictions and the properties of resulting (human) decisions. In our model, we consider

a decision that aims to predict a label from features with minimal prediction loss. At the time of

the decision, the decision-maker has access to a machine prediction of the label of interest. This

prediction is derived from a training data-set that the decision-maker does not have direct access
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to. This setup could represent a judge’s bail decision for which a risk score may be available, or

a loan officer’s approval decision with the help of a credit score. In our lab experiment, study

subjects were incentivized to evaluate the math performance of test-takers based on demographic

information as well as an algorithmic assistant that provided summary information from a training

sample of similar test-takers.

We focus on the fairness properties of the resulting decision in our model and experiment, and

analyze possible trade-offs with accuracy. We capture fairness by the disparity that encodes how

the decision varies between instances that differ in their membership to a (protected) group. We

measure disparity as we may want decisions not to differ between groups, holding other character-

istics constant. We contrast disparity with accuracy (expected loss) of the decision. By focusing

on conditional statistical parity, we consider a specific notion of fairness that is directly related to

the inclusion of protected characteristics in the decision. We discuss other notions of fairness in

the extension section.

In a baseline case of our theoretical model, where machine predictions are implemented directly,

excluding protected characteristics reduces disparities, conditional on all other features. Thus, when

the labels differ across groups in the data, the objectives of minimizing risk and minimizing disparity

may be in conflict. This presents us with a trade-off to consider when choosing which inputs to

include in the algorithm.

Having established the baseline case, we switch to a human decision-maker who uses the machine

prediction to inform their decision. Adopting a standard model from statistical decision theory, the

human decision-maker updates their prior beliefs using the information contained in the machine

predictions. Thus the role of the predictions moves from taking action to informing the decision-

maker through a concise summary (the prediction itself). Changing the inputs available to the

prediction now changes the information presented to the decision-maker.

We consider a human decision-maker who starts with biased beliefs about the differences in true

labels across protected groups. Prior work studies and provides evidence of the role of biased beliefs

in discrimination (Coffman et al., 2021; Bohren et al., 2019a). In such cases, the decision-maker

believes that differences between groups are larger than they are on average in the training data

available to the algorithm. The design of the algorithm may then have implications for how the

human decision-maker updates their beliefs about the differences between groups before taking a

decision.

When the human has a biased prior, common relationships between the inclusion of protected

characteristics and the disparities in the final decision may revert. We show formally how the

decisions of a biased decision-maker may have larger disparity when the machine predictions exclude

protected characteristics. The intuition behind this result is straightforward: if the machine input

is not informative about the differences between groups, the prior bias of the human decision-

maker remains unmitigated. We show this reversal in a stylized example and then provide general
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theorems that apply in large samples. Our results therefore show that, in the case of algorithmic

assistance, some of the common trade-offs between fairness and accuracy do not apply.

We then use an experiment to test how machine-assisted human decisions vary with the type of

information presented to decision-makers. In the experiment, study subjects were asked to evaluate

the math performance of test-takers based on demographic information (age, gender, education)

as well summary information on the average score of similar test-takers. This average plays the

role of an algorithmic assistant in our experiment. Participants were randomized into one of six

conditions, which varied by the subsample of test-takers used to calculate the average provided to

the participant. The main intervention was variation over whether the assistant was an average

calculated for a subsample of men and women (control), or an average calculated separately for men

and women (treatment). By randomly varying whether the assistant was gender-blind or gender-

aware, we are able to analyze the causal effect of the inclusion of gender information on predictions

by our study subjects. The design of the experiment is meant to mirror our model in which the

algorithm given to the human decision-maker can be either gender-blind or gender-aware.

Preliminary results of our experiment show that the average difference in evaluations for women

and men are lower when subjects receive an assistant that is gender-aware. As our main outcome

of interest, we consider the difference in the average evaluations for female test-takers and male

test-takers in a weighted sample that is meant to reflect the composition of profiles given to ex-

periment particiapants in the population of test-takers from which these profiles were drawn. For

all treatment groups, the disparity in average evaluations for women and men (calculated as the

average for women minus the average for men) is negative when the assistant does not include

gender, meaning that participants on average predicted that men performed better on the math

test than women within the weighted sample. However, when the assistant includes gender, the

difference in average evaluations between women and men is indistinguishable from zero.

We view these results are consistent with our model. When participants receive information that

is gender-blind, they estimate that women perform worse on the math test than men, averaged over

the test-taker distribution. In reality, women perform better on the math test, so when participants

receive an average that is calculated separately for men and women, they adjust their performance

estimates for women upwards relatively more. This means that disparities of estimates for men

and women are lower when information is gender-specific. Based on our preliminary analysis, these

results seem to be driven by participants failing to understand gender differences in the relationship

between education, age, and math ability, rather than by participants evaluating female test-takers

as worse than men with similar profiles. Our results on differences in evaluations across genders draw

a nuanced picture of the role of including gender in the algorithmic assistant. While the weighted

results are in line with our model prediction, they are driven by an (implicit) misunderstanding of

gender differences in the relationship between education and performance, rather than by outright

(explicit) bias against women with otherwise similar profiles.
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Our theoretical and experimental results suggest that we have to take the structure of decisions

into account when relating machine predictions to the (fairness) properties of algorithms. While

our analysis shows that typical intuitions about the effect of including protected-class information

may not apply to machine-assisted human decisions, there may be other reasons to avoid protected

characteristics that we do not capture in our model and which alter conclusions about their in-

clusion. Importantly, our analysis demonstrates that any such conclusion should take the specific

way in which predictions are to be used in the decision-making system into account. More broadly,

we highlight the importance of analyzing the impact of machine predictions in the context of the

full decision environment, which includes the way in which (possibly biased) data informs machine

predictions and how humans (with possibly biased priors or preferences) use these predictions.

We contribute to an interdisciplinary literature on algorithmic fairness that spans computer

science, statistics, economics, law, and operations. Kleinberg et al. (2016) and Chouldechova (2016)

study tensions between different fairness qualities of algorithms. Bastani et al. (2021), among other,

consider interaction of machine predictions and human decisions. Dietvorst et al. (2018); Stevenson

and Doleac (2019); Ludwig and Mullainathan (2021) document frictions in the adoption of machine

predictions. More specifically, we relate to a literature that explicitly considers fairness properties

of machine-assisted human decisions, including Morgan and Pass (2019) and Green and Chen

(2019). The article is also related to an economics literature on fairness and discrimination, which

attempts to identify sources of biased decisions and distinguishes between preference- and belief-

based explanations (Bordalo et al., 2019; Bohren et al., 2019a,b; Coffman et al., 2021; Chan, 2022;

Eyting, 2022). In terms of our model, we relate to a approaches in econometrics and economics to

consider the communication of statistical results (Kleinberg et al., 2018b) and the strategic design

of information (Kamenica and Gentzkow, 2011). We review the overall literature in more detail at

the end of this article.

The remainder of this article proceeds as follows. Section 2 introduces our model. Section 3

demonstrates our main results in a stylized example before we generalize these results in Section 4.

Preliminary experimental results are presented in Section 5. In Section 6 we discuss some implica-

tions of our result. Finally, we consider extensions in Section 7 before expanding on our literature

review in Section 8 and concluding in Section 9.

2 Setup

This section lays out a model of machine-assisted human decision-making. Specifically, we consider

a simple prediction decision taken by a decision-maker. For an instance (X,G), we consider per-

sonalized decisions Ŷ = d(X,G) that may vary by features X and group identity G. Here, features

X may comprise baseline characteristics available at the time the decision is taken, and the group

identity G may encode additional sensitive attributes such as gender or ethnicity/race that may be

subject to legal constraints or ethical considerations.
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The decision-maker aims to take decisions with small prediction loss. A decision Ŷ = d(X,G)

leads to loss ℓ(Ŷ , Y ), where Y is the true label of the instance (X,G) that is unavailable at the time

of the decision. For simplicity, we will focus here on a simple prediction decision Ŷ = d(X,G) ∈ R
relative to a true label Y ∈ R with squared-error loss ℓ(Ŷ , Y ) = (Ŷ − Y )2. We can think of

this choice as an explicit prediction decision or an implicit assessment where loss approximates a

consequence of the associated decision. We briefly mention binary decisions in Section 7.

In order to describe the consequences of different decision policies, we make assumptions on the

distribution of outcome labels. We assume that the true label Y |X = x,G = g has mean µ(x, g)

and variance σ2
x,g. For tractability, we assume here that the variance is finite, constant, and known

(σ2
x,g ≡ σ2 > 0), that the error term Y − µ(x, g)|X = x,G = g is Normally distributed, that X has

finite support, and that G is binary. The expected (out-of-sample) loss (risk) of the decision rule d

is r̄d = E[ℓ(d(X,G), Y )] = E[(d(X,G) − µ(X,G))2] + σ2. Writing r0d(x, g) = E[ℓ(d(X,G), Y )|X =

x,G = g] for the risk at (x, g) and rd(x) = E[ℓ(d(X,G), Y )|X = x] for the average risk at x, we

have that r̄d = E[r0d(X,G)] = E[rd(X)]. The risk expresses the accuracy of the decision.

In addition to the accuracy of the decision, we may also care about how the decision treats

instances (X,G = 1), (X,G = 0) differently that vary only by their group identity. We define

∆d(x) = d(x, 1)− d(x, 0) as the decision disparity of decision rule d between group 1 and group 0,

and write ∆̄d = E[∆d(X)] for its average across instances.

Disparities ∆d(x) may be of interest when there are legal or ethical grounds for not treating

people differently who only differ in their group membership. This may be true when the ground-

truth discrepancies ∆µ(x) are zero, and we are worried that an unfair decision introduces biases. But

even when the true discrepancies are not zero – which could be due to omitted variables, different

outcomes that reflect past or future discrimination, or a causal relationship – we may want to ensure

that discrepancies are small to address biased data, correct institutional discrimination, or comply

with legal restrictions. By considering disparities, we focus on conditional statistical parity as our

notion of fairness; we briefly discuss extension to accuracy-based fairness concepts in Section 7.

We assume that the decision d(x, g) is taken by a decision-maker with decision authority who

has a belief (prior) π over the mean vector (µ(x, g))x,g. This belief incorporates any ex-ante beliefs

and prior data the decision-maker may have observed. In addition to this belief, the decision-maker

also observes a machine prediction f̂(X,G), which for simplicity we assume comes from a training

data of iid draws (Yi, Xi, Gi) that are independent of the deployment data and independent of the

decision-maker’s prior (and not available to the decision-maker directly). Specifically, we consider

the two predictions

f̂−(x) =
1

n(x, 1) + n(x, 0)

∑
Xi=x

Yi, f̂+(x, g) =
1

n(x, g)

∑
Xi=x,Gi=g

Yi,

where n(x, g) denotes the number of observations i with Xi = x,Gi = g. The first prediction does
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not vary with group identity, while the second one does. We discuss expanding to more complex

functional forms in Section 7 below, but for now focus on these simple averages, which allow us to

model learning by the agent.

We consider three decisions taken by the decision-maker to minimize average expected loss.

First, we consider the decisions d0 that the decision-maker would take without access to any pre-

diction. Second, we consider the decision d̂− the decision-maker would take when given access to

the prediction f̂−(X) for the instance (X,G). Finally, we consider the analogous decision d̂+ given

the more detailed prediction f̂+(X,G). We assume that the decision-maker minimizes expected

loss ℓ(X,G), averaged over her prior.1 The three decisions are therefore

d0(x, g) = Eπ[µ(x, g)], d̂−(x, g) = Eπ[µ(x, g)|f̂−(x)], d̂+(x, g) = Eπ[µ(x, g)|f̂+(x, g)].

Note that d̂−(x, g), d̂+(x, g) are random variables since they depend on the training data, even for

fixed x, g.

We are interested in the relative accuracy and disparities of these three decisions of the decision-

maker, and compare them to applying the machine predictions directly. While not explicitly dis-

cussed in the results below, combining human priors with machine predictions can improve the

accuracy of decisions by combining information even when not enforced by institutional constraints.

In the main part of this article, however, we take human decision-authority as given and focus on

comparing d0, d̂−, d̂+, rather than whether one should or should not delegate a given decision to a

human decision-maker, a machine, a human-assisted machine, or a machine-assisted human.

3 Illustration in a simple example

Having laid out a model of machine-assisted decision-making, we are interested in comparing the

consequences of different types of machine assistance. We begin by considering a simple example in

which we focus on instances with X = x fixed (so that the only variation is the group membership

G), so for simplicity we drop the x subscripts and inputs in this section. For this simple example,

we assume

◦ Y |G = g ∼ N (µ(g), σ2) drawn independently upon realization of G, and write ∆µ = µ(1) −
µ(0) and µ̄ = µ(1)+µ(0)

2 ;

◦ the decision-maker holds a prior belief π that µ(g) ∼ N (β(g), τ2), that these distributions

are independent across g, and write δ = β(1)− β(0) and β̄ = β(1)+β(0)
2 ;

1We assume that the decision-maker observes a single instance at a time, and at this point take into account
only the prediction for this specific instance. In principle, the decision-maker could also learn from other predictions;
however, we assume that the structure of the full prediction function is too complex for or not available to the
decision-maker, and the decision-maker solely updates based on f̂(X,G). We discuss extensions in Section 7.
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◦ the group distribution is P(G = 1) = 1
2 ;

◦ we have training data with n(1) = n
2 = n(0).

In Section 4, we will drop these distributional assumptions about beliefs and generalize the main

insights from the example.

Under these assumptions, the machine predictions take a particularly simple form, namely

f̂+(g) =
2

n

∑
Gi=g

Yi, f̂− =
1

n

n∑
i=1

Yi,

and the decision-maker’s optimal decisions are

d0(g) = Eπ[µ(g)] = β(g) = β̄ +
2g − 1

2
δ,

d̂−(g) = Eπ[µ(g)|f̂−] =
σ2β̄+ τ2

2

∑n
i=1 Yi

σ2 + n τ2

2

+
2g − 1

2
δ,

d̂+(g) = Eπ[µ(g)|f̂+(g)] =
σ2β(g)+τ2

∑
Gi=g Yi

σ2 + n
2 τ

2
.

The decisions d̂− and d̂+ have an intuitive structure. When given access to f̂+(g) the decision-

maker combines their prior of µ(g) with a normal signal of µ(g) whose accuracy is a function of

sample size and prior variance. We can find the resulting posterior expectation d̂+(g) through

inverse-variance weighting. The decision-maker who only observes f̂−, on the other hand, updates

about the average µ̄ = µ(1)+µ(0)
2 (first term), but not about the difference ∆µ = µ(1)−µ(0) (second

term), which is orthogonal in this specific example.

d̂ E[∆d̂] E[rd̂]

f̂− 0
∆2

µ

4 + σ2
(
1 + 1

n

)
f̂+ ∆µ σ2

(
1 + 2

n

)
d0 δ (µ̄−β̄)2 +

(∆µ−δ)2

4 + σ2

d̂− δ σ4(µ̄−β̄)2

(σ2+n
2
τ2)2

+
(∆µ−δ)2

4 + σ2
(
1 + nτ4

4(σ2+n
2
τ2)2

)
d̂+

σ2δ+n
2
τ2∆µ

σ2+n
2
τ2

σ4

(
(µ̄−β̄)2+

(∆µ−δ)2

4

)
(σ2+n

2
τ2)

2 + σ2
(
1 + nτ4

2(σ2+n
2
τ2)2

)
Table 1: Disparities and risks in the example

For this example, Table 1 lists the resulting expected risks and disparities, which are both taken

as averages over the training sample given the true values of µ(1), µ(0) and at the given X = x, in

terms of ground truth ∆µ, µ̄, beliefs δ, β̄, noise σ2, prior variance τ2, and sample size n. We first
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summarize the features of the example in terms of expected disparities; we will generalize these

findings and drop expectations in the next section below.

Remark 1 (Disparity reversal in the example). If the human decision-maker ex-ante believes that

the disparity is larger than it actually is, δ > ∆µ ≥ 0, then

∆d̂−
= ∆d0 = δ > E[∆d̂+

],

while for the underlying predictions ∆f̂−
= 0 ≤ E[∆f̂+

].

Hence, in this example, the usual ordering of disparities is reversed. Under the automated

approach that implements f̂−, f̂+ directly, inclusion of g allows for differentiated action. Thus f̂−

will not exhibit disparity in the actions it takes while f̂+ will on average separate its decisions by

∆µ. Since the human decision-maker does not update about disparities when given access only to

f̂−, the prior disparity persists, leading to excess disparity. Giving the biased decision-maker access

to f̂+, on the other hand, reduces disparities relative to the unaided decision-maker (d0) as well as

the decision-maker who only sees f̂−.

We next inspect the relationship of disparities and accuracy. Fairness and accuracy are some-

times seen as representing a trade-off when considering the inclusion of protected characteristics;

we show that this trade-off may disappear under our model of machine-assisted human decisions,

and already for pure automation will depend on the bias–variance trade-off in training.

Remark 2 (Trade-off reversal in the example). For ξ = 2σ√
n
and δ > ∆µ +

2τσ√
nτ2+4σ2

, we find that:

1. Trade-off regime. If ∆µ > ξ then there is a disparity–accuracy trade-off for automation,

|∆f̂+
(x)| > |∆f̂−

(x)| a.s., E[rf̂+ ] < E[rf̂− ],

which disappears for assistance,

∆d̂+
(x) < E[∆d̂−

(x)], E[rd̂+ ] < E[rd̂− ].

2. Dominance regime. If 0 ≤ ∆µ < ξ then there is no trade-off for either decision, and

|∆f̂+
(x)| > |∆f̂−

(x)| a.s., E[rf̂+ ] > E[rf̂− ],

∆d̂+
(x) < E[∆d̂−

(x)], E[rd̂+ ] < E[rd̂− ].

When the sample size is large enough (and thus ξ is small) relative to the disparity in the

data, including the group identity in prediction makes the automated decision more accurate at the

cost of disparity, while the exclusion of information makes both disparity and accuracy worse for
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assistance. If true disparities are very small, then even for automation there is no trade-off between

these two goals. By excluding group information, the automated rule reduces variance more than it

increases loss due to (statistical) bias. In cases where the the prior disparity is very close to the true

disparity in the data in the sense that ∆µ < δ < ∆µ +
2τσ√

nτ2+4σ2
, the assisted human decision even

exhibits the reverse of the usual trade-off, where exclusion of group information increases disparity

and accuracy.

4 Main results

In this section, we analyze general patterns in the disparities (and accuracy) in the model from

Section 2. As a baseline, we first consider the direct implementation of the predictions f̂+, f̂− that

vary by their use of group=specific information. For our main results, we then consider decisions

d̂+, d̂− by the human decision-maker using these different predictions as input. Throughout, we

hold the X covariate fixed, X = x, as we evaluate the decision-rule, which is without loss in our

framework.

If we directly implemented the machine predictions f̂+(x, g) (which varies by group) and f̂−(x)

(which ignores group membership), we note that disparities would trivially be

∆f̂−
(x) = 0, E[∆f̂+

(x)] = ∆µ(x)

(with expectations over the training data), and

|∆f̂+
(x)| > |∆f̂−

(x)| = 0 (1)

almost surely, since f̂+ can vary by group, while f̂− does not. Often, these difference in discrepancy

are seen as one side of a trade-off with accuracy, where the more disparate rule is also more accurate;

we note that if we take the perspective that f̂−, f̂+ are learned from training data then there is not

necessarily a trade-off:

Remark 3 (Trade-off vs dominance regimes for machine decisions). For every x and sample sizes

n(x, 1), n(x, 0) > 0 there exists an ξ > 0 such that:

1. Trade-off regime. If |∆µ(x)| > ξ, then∣∣∣∆f̂+
(x)
∣∣∣ > |∆f̂−

(x)| a.s., E[rf̂+(x)] < E[rf̂−(x)].

2. Dominance regime. If |∆µ(x)| < ξ, then∣∣∣∆f̂+
(x)
∣∣∣ > |∆f̂−

(x)| a.s., E[rf̂+(x)] > E[rf̂−(x)].

10



In other words, when the true disparity in outcomes between the two groups is small, then

there is no trade-off between increasing accuracy and increasing disparities; in that case, ignoring

group identity and learning jointly serves as a form of regularization that improves predictions in

this simple learning framework.

We now turn to human decisions with machine assistance, where we investigate the interplay

between decision-maker biases and the nature of machine assistance. Specifically, we assume that

the decision-maker, while aiming to maximize accuracy, may have biased beliefs about the relative

means of the two groups, which we express by (excess) disparity in their prior. To formalize our

assumption, it will be helpful to define as

µ̄(x) =
n(x, 1)µ(x, 1) + n(x, 0)µ(x, 0)

n(x, 1) + n(x, 0)

the average of instances with X = x in the training data.

Assumption 1 (δ-disparate beliefs). The decision-maker’s belief π about means at X = x assumes

that there is a disparity of at least δ > 0 between groups G = 1 and G = 0 with all else known,

Eπ[µ(x, 1)− µ(x, 0)|µ̄(x)] ≥ δ.

In this assumption, we condition on the average µ̄(x) to rule out cases where beliefs about the

difference µ(x, 1)− µ(x, 0) in means are overwhelmed by updates about the average µ̄(x). We also

make a regularity assumptions about the prior, in addition to Normal error terms in Section 2.

Assumption 2 (Finite prior moments). For all (x, g), Eπ[|µ(x, g)|] < ∞.

Under these assumptions, we π-almost surely obtain a reversal in disparities of d̂− and d̂+,

relative to f̂− and f̂+:

Theorem 1 (Disparity reversal). Assume that the decision-maker has δ-disparate beliefs, that the

regularity conditions hold, and that 0 ≤ ∆µ(x) < δ. Then π-almost surely for every η > 0 there

exists some N such that with probability (over draws of the training data) at least 1− η we have

∆d̂+
(x) < δ ≤ ∆d̂−

(x),∆d0(x)

whenever n(x, 1), n(x, 0) ≥ N .

The statement holds for a set of true means µ that have prior probability one, which may exclude

areas of the parameter space that the human decision-maker rules out ex-ante. Specifically, the

conclusion of the theorem may fail to hold when the decision-maker has a dogmatic prior that

cannot be overcome by the data.

The intuition behind this result is straightforward: If the decision-maker is biased in the sense

that they overestimate the disparity relative to the data, then a prediction that does not vary by
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group preserves that disparity, while separate predictions help overcome it. Relative to the machine

baseline in (1), the disparity is reversed; including protected characteristics increases disparities in

automation, while reducing bias relative to the no-assistance and f̂−-assisted decisions of the human

decision-maker.

Corollary 1 (Disparity reordering). Under the conditions of Theorem 1 with ∆µ(x) ≥ 0, with

probability at least 1− η

|∆d̂−
(x)|

|∆d̂0
(x)|

}
>

{
|∆d̂+

(x)|
|∆f̂+

(x)|

}
> |∆f̂−

(x)|.

When there is a trade-off between disparity and accuracy in the case where the machine pre-

diction is directly implemented, then this trade-off is eliminated in large samples as we move from

automation to assistance.

Theorem 2 (Trade-off reversal). Assume that the decision-maker has δ-disparate beliefs, that the

regularity conditions hold, and that 0 < ∆µ(x) < δ. Then π-almost surely for every η > 0 and

ζ ∈
(
0, 12
]
there exists some M such that with probability (over draws of the training data) at least

1− η we have that

∆d̂+
(x) < ∆d̂−

(x) and rd̂+(x) < rd̂−(x)

while

∆f̂+
(x) > ∆f̂−

(x) and r0
f̂+
(x, g) < r0

f̂−
(x, g) for g ∈ {0, 1}

whenever ζ ≤ n(x,0)
n(x,0)+n(x,1) ,

n(x,1)
n(x,0)+n(x,1) ≤ 1− ζ and n(x, 0) + n(x, 1) ≥ M.

Hence, not only does incorporating the biased human decision-maker reverse the intuition

around the effect of the inclusion of group information in prediction functions. Taking into account

the interaction of prediction and human bias also negates the usual trade-off between accuracy and

disparity.

5 Experiment (preliminary and incomplete)

Above, we analyzed machine-assisted human decisions in a simple model of statistical decision-

making. We now describe a lab experiment that evaluates empirically how machine-assisted human

decisions vary with the type of information presented to decision-makers. In the experiment,

study subjects were asked to evaluate the math performance of test-takers based on demographic

information as well as an algorithmic assistant that provided summary information from a training
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sample of similar test-takers. By randomly varying whether the summary information was gender-

blind or gender-aware, we are able to analyze the causal effect of the inclusion of gender information

on evaluations by our study subjects. Preliminary results of our experiment show that evaluations

informed by gender-specific information can reduce average gender disparities in human decisions

relative to human decisions informed by a gender-blind algorithm.

5.1 Experimental design

In our experiment, we asked participants to predict the performance of multiple test-takers on

a math task.2 For each test-taker, the study participants saw (i) test-taker characteristics (age,

gender, education) as well as (ii) assistance in the form of an average of the performance of other

test-takers with similar characteristics. The main intervention was variation over which group the

performance of previous test-takers was averaged to create the assistant that study participants

received. In the treatment conditions, averages were formed separately by gender (we consider the

self-identified gender of the test-takers as the ‘protected characteristic’). In the control conditions,

averages were taken jointly across genders. Participants looked at a series of up to twelve randomly

ordered profiles of math test takers from a previous study and evaluated their performance on the

test. Participants were rewarded based on the accuracy of their evaluations. Participants were

recruited from the Prolific crowdsourcing platform and a total of 1, 241 participants took part in

the experiment, making 14, 248 guesses.

We first describe the population of test-takers used in the experiment and then describe the

treatments of the main experiment and outcomes of interest.

Population of test-takers. The population of test-takers was taken from a separate experiment

in which participants were asked six math questions in addition to other demographic information

such as the test-taker’s gender, age, education and income.3 The original study had a total of 396

participants, with 207 male participants and 189 female participants. Figure 1 shows the math

score (share of correct answers) of math-takers separately by gender, age (below and above 45),

and education (4-year college degree or less).

Experimental treatments. All study participants received baseline information about the com-

position of test-takers and overall average performance. For each test-taker, study participants were

shown the test-taker’s gender g, and two additional covariates, x1 (age) and x2 (educational at-

tainment). Participants were randomized into one of six conditions, which varied by the subsample

2The preregistration of the experiment can be found at socialscienceregistry.org/trials/10416. The experiment
was approved by the IRB at Columbia (approval number AAAU3601) and Stanford (approval number 66199).

3Test scores and profile data are from Cecilia Ridgeway of Stanford University and Tamar Kricheli-Katz of Tel
Aviv University for their working paper “Behavioral responses to the changing world of gender.”
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Figure 1: Average math scores (fraction of correct answers, where 1 means all questions were
answered correctly) in a data-set of 396 test-takers from a previous study, separated by age (above
and below 45), gender (female and male), and education (4-year college degree or less).

from the sample of test-takers used to calculate the average provided to the participant, which we

refered to as the assistant:

1. Condition 0−: Participants received average score of all training test-takers.

2. Condition 0+: Participants received the average score of test-takers in the training sample

who share g with the profile they are evaluating.

3. Condition 1−: Participants received the average score of test-takers in the training sample

who share the same age range (x1) with the profile they are evaluating.

4. Condition 1+: Participants received the average score of test-takers in the training sample

who share the same age range (x1) and g with the profile they are evaluating.

5. Condition 2−: Participants received the average score of test-takers in the training sample

who share the same age range (x1) and educational attainment (x2) with the profile they are

evaluating.

6. Condition 2+: Participants received the average score of test-takers in the training sample

who share the same age range (x1) and educational attainment (x2) and g with the profile

they are evaluating.

These conditions, therefore, vary by which covariates assistant averages were taken over, x1

(age) and/or x2 (educational attainment), and by whether the assistant is calculated without gender
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(control) or with gender (treatment). Participants also answered questions about their beliefs in

their own prediction abilities and the extent to which they adjusted their predictions in response to

the assistant provided. Finally, participants also answered questions about their own gender, age,

and education level to allow us to check for in-group biases.

Outcomes of interest. Our primary outcome of interest is the average evaluations of female

test-takers and the average evaluations of male test-takers across the six conditions. As our main

test, we compare the difference between the average evaluation of female test-takers and the average

evaluation of male test-takers across all treatment conditions (conditions 0+, 1+ and 2+) to the

same difference across all control conditions (conditions 0−, 1− and 2−). Our null hypothesis is

that the difference between the average evaluations of female test-takers and male test-takers is

not higher in treatment conditions than in control conditions. Our secondary outcome of interest

is the differences in average evaluations of female and male test-takers by participant gender.

5.2 Preliminary results

To analyze the differences in evaluations of female test-takes and male test-takers, we consider

weighted averages over the evaluation of the 24 different test-taker profiles in our study. The 24

profiles shown to participants consist of a panel of 12 female and 12 male profiles that were balanced

with respect to age and education. Because women are less likely to have a 4-year college degree

than men in our dataset of test-takers, we oversampled educated women in our profiles selected for

the experiment. In analyzing the results, we undo this oversampling by weighting profiles by the

share of that a group (defined by ten-year age groups, education, and gender) in the population of

test-takers, meaning the population in the math test-taker dataset. We then compare these results

to unweighted averages in order to understand the impact of variation in test-taker composition by

gender.

Our main results are represented in Figure 2, which shows the average difference in evaluation for

women and men (calculated as the average for women minus the average for men, so that a negative

difference means that the average was higher for men than women) across different conditions. For

all treatment groups, the difference in the average evaluation for women and men (blue) is negative

when the assistant does not include gender, meaning that participants on average predicted that

men performed better on the math test than women within the weighted sample. This negative bias

gets attenuated as additional conditioning covariates are added to the assistant averages. However,

when the assistant includes gender, the difference in average evaluations between women and men

is indistinguishable from zero across all information sets. This result stands in contrast to the

properties of the algorithmic predictions themselves (red), which are balanced across genders when

gender is not included, and show higher averages for women than men when gender is included.

This is because women perform better than men on average over the full sample (green).

15



Figure 2: Average evaluation (blue), math score (green), and assistant score (red) based on weighted
averages over test-takers in the held-out samples, where weights are chosen according to the share
of the respective group in the population of test-takers. The reported estimates represent the
percentage-point difference in averages over women minus averages over men, meaning that a
positive number indicates that women are evaluated (or perform) relatively higher. Percentages
indicate the fraction of correctly answered questions on the math test.

We view these results as consistent with our model. When participants receive information that

is gender-blind, they estimate that women perform worse on the math test than men, averaged over

the test-taker distribution. In reality, women perform better on the math test, so when participants

receive an average that is calculated separately for men and women, they adjust their performance

estimates for women upwards relatively more. This means that disparities of estimates for men

and women are lower when information is gender-specific.

However, based on our preliminary analysis, these results seem to be driven by participants

failing to understand gender differences in the relationship between education, age, and math

ability, rather than by participants evaluating female test-takers as worse than men with similar

profiles. Figure 3 shows results for the comparison of raw averages, where profiles are balanced

across genders with respect to age and education. In this balanced sample of test-takers, the
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Figure 3: Average evaluation (blue), math score (green), and assistant score (red) based on un-
weighted average test-taker evaluations of participants, for which profile compositions are artificially
balanced across genders. The reported estimates represent the percentage-point difference in aver-
ages over women minus averages over men, meaning that a positive number indicates that women
are evaluated (or perform) relatively higher. Percentages indicate the fraction of correctly answered
questions on the math test.

study subjects in our study evaluate men and women similarly on average when the assistant

is gender-blind, and adjust their evaluation of women relatively more upward when given gender-

specific information. Relative to the true average performance, providing gender-specific assistance,

therefore, reduces human bias against women. But in absolute terms, providing gender information

increases the average difference between evaluations of women and men with otherwise similar age

and education.

Taken together, the weighted and unweighted results on differences in evaluations across gen-

ders draw a nuanced picture of the role of including gender in the algorithmic assistant. While the

weighted results are in line with our model prediction, they are driven by an (implicit) misunder-

standing of gender differences in the relationship between education and performance, rather than

by outright (explicit) bias against women with otherwise similar profiles. Capturing the results
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more broadly would require further refinement of the theory that moves beyond conditional parity,

and considers implications for unconditional parity when the distribution of characteristics is not

balanced across groups.

6 Implications

In the previous sections, we showed that considering a biased decision-maker who is assisted by a

prediction algorithm may reverse the effect of including protected characteristics in the prediction:

While an algorithm that does not differentiate by protected characteristics may reduce disparities

when applied directly (“automation”), excluding group information may not be effective or even

counterproductive for reducing disparities when the algorithm provides an input to human decision-

making (“assistance”). In this section, we consider implications of this result for the debate around

the use of protected characteristics in algorithms and the evaluation of algorithmic properties in

context.

6.1 Use of protected characteristics

Excluding characteristics from consideration by a machine-learning algorithm – only in deployment

or in training and deployment – is sometimes considered a way to assure that people with other-

wise similar features are treated similarly.4 Our results show that this is not necessarily true for

machine-assisted human decisions and thus provides a potential rationale for including protected

characteristics. However, there are other economic, legal, and ethical considerations around the

inclusion of protected information that we do not model and may lead to different conclusions,

including bias in existing data, biased preferences (as opposed to beliefs) of the agent, dogmatic

beliefs that are hard to overcome with data, and limited rationality that prevents the agent from

updating towards less biased choices. We review some of these extensions in Section 7 below.

While our analysis remains limited to the specific case of a human with a biased prior, the

formal results clarify that studying the properties of machine-assisted human decisions requires

careful consideration of the role of the human decision-maker and the context in which the decision

takes place. In particular, we document that in a standard model of choice under uncertainty,

properties of the prediction function do not directly translate into analogous properties of resulting

decisions (similar to the work of Andrews and Shapiro, 2021, for reporting statistical results to a

decision-maker), and that a naive application of existing results may have unintended consequences

when applied to machine-assisted human decisions.

4A growing literature questions the exclusion of group information because it may be ineffective (Gillis and Spiess,
2018; Gillis, 2022) or even counterproductive (Kleinberg et al., 2018b). We focus here on the direct effects of exclusion
on differences in decisions even in the simple case where exclusion would be effective for automation.

18



6.2 Fairness in context

Our results clarify that determining the fairness, bias, and impact of algorithmic decisions requires

going beyond the properties of a prediction rule in isolation. Specifically, in the chain from data

to prediction to decision (Figure 4), biases in the data and properties of predictions rules are

not the only factors that shape the properties of the resulting decisions. The process by which

data is transformed into a prediction function (the algorithm) and how predictions are used to

make decisions (in our case, the human decision-maker with their beliefs) shape the properties of

the decision. For example, Remark 3 shows that the training process (in this case, the signal-to-

noise ratio in the data and implicit regularization) matters for the relationship between accuracy

and disparity. Our main result then shows that the mapping from prediction function to human

decisions is non-trivial and may likewise alter commonly assumed trade-offs.

data
algorithm−→ prediction

human−→ decision

Figure 4: A view on data-driven decisions

The need to consider properties of algorithmic decisions in their proper context often requires

extending current frameworks that narrowly focus on the properties of static decision rules without

modeling how they are learned from data or leveraged to take decisions. In this article, we instead

highlight cases in which an analysis of fairness relies on a view of the whole process by which data

and human beliefs are turned into decisions. While this framework still falls short of modeling

the additional historical, institutional, and dynamic context that may be required to describe

equilibrium outcomes and their welfare implications, we hope to highlight the value of analyzing

critical properties of algorithmic decisions in their context.

7 Extensions

Our current model remains limited to prediction decisions by a rational decision-maker with biased

beliefs, where predictions are provided by simple averages from unbiased training data. In this

section, we briefly discuss extensions to our approach that aim to make the analysis more complete

and applicable.

7.1 Correlated covariates

Our current model considers the inclusion or exclusion of protected group characteristics. However,

in many applications, the inclusion of protected class itself may be prohibited or otherwise infeasible.

In such cases, discussions around inclusions and exclusion may instead center around the role of

features that are correlated with protected class, and thus may serve as proxies that lead to disparity
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in machine predictions. In those cases, similar results apply as for the role of protected class itself:

excluding close proxies may hurt, rather than help, to reduce disparities when predictions become

less informative about true differences across groups.

7.2 Binary decisions

Many of the assisted decisions studied in the fairness literature, such as employment, pretrial release,

and lending, are binary rather than continuous. To convert between real-valued parameters and

binary (or discrete) decisions, thresholds are commonly used. In these cases, we can distinguish

between an algorithm’s prediction, for example, a defendant’s risk score for recidivism, and the

decision itself, such as whether to release a defendant on bail. Even when a prediction is used

automatically in decision-making, this implicitly assumes the use of a decision rule that translates

the prediction to a decision, such as a risk threshold below which defendants are released. We have

chosen prediction decisions with a continuous true label for convenience. While we do not expect

the main takeaways to change when applied to binary decisions based on threshold rules, we see

a more complete treatment that formally includes binary decisions as a natural next step in the

analysis.

7.3 Biased preferences

Throughout this work we have assumed that both the decision-maker and algorithm designer are

aligned in the goal of minimizing risk. As Kamenica and Gentzkow (2011) show, if there are

misaligned preferences, the algorithm designer has the potential to improve the decisions taken by

designing the structure of the information revealed to the decision-maker. An interesting extension

is the optimal design of algorithms for cases where the source of bias is preference misalignment,

rather than belief bias.

7.4 Biased data, biased equilibria

In our model, we have assumed that the training data provides unbiased signals of some ground-

truth label of interest. But when the data itself is biased then the exclusion of protected char-

acteristics may correct for biases and lead to more accurate predictions. Relatedly, the data may

itself be the result of decisions by algorithms and (biased) decision-makers, leading to biased con-

clusions that may sustain discriminatory equilibria. Modelling biases in the data itself is therefore

an important extension of our current model.

7.5 Machine learning beyond simple averages, and transparency

Our model utilizes simple averages to model machine-learning algorithms, which are easy to inter-

pret statistically and can provide a clear answer to the problem of information transfer we wish
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to solve. An important extension of this work is to model more complex regularization schemes.

Information between types (x′, g′) and (x, g) could be averaged if they draw from Y from similar

distributions. Such data combination could happen adaptively.

Modeling such an extension faces at least two challenges that we side-step in our current results.

First, pointwise predictions could then contain information about other parts of the distribution,

including direct information about differences between groups. Second, more complex algorithms

pose the question of transparency and whether the decision-maker in our model would be able to un-

derstand the algorithm well enough to update optimally. Here, both transparent and intransparent

algorithms could have advantages.

7.6 Noisy decisions

A fundamental problem when modeling human decision-making is the inconsistency in their actions

taken under seemingly similar conditions. For example, Kleinberg et al. (2018a) find that (less

noisy) predictions of (noisy) human decisions may outperform the latter in judicial decisions. While

our current model assumes that decisions given data and features are not stochastic, our model

extends naturally to noisy decisions.

7.7 Alternative notions of fairness, disparities in accuracy

We have focused so far on conditional statistical parity in predictions as our measure of fairness.

However, disparities are only one way of expressing unfair decisions; for example, we may also be

interested in differences in the accuracy of decisions across groups. Discussing fairness measures

based on mistakes becomes particularly relevant as we move from prediction to binary decisions.

For example, Morgan and Pass (2019) consider equalized odds as a notion of fair treatment by the

machine in their model of computer-assisted decision-making. The fact that different notions of

fairness cannot be achieved simultaneously (Kleinberg et al., 2016; Chouldechova, 2016) suggests

that the conclusions we would draw in our model could depend on the specific measure we consider.

7.8 Distributional assumptions

In our model from Section 2, we currently assume that error terms are Normally distributed with

fixed variance, which ensures that the error terms themselves are not informative about the means.

(The prior belief, on the other hand, does not generally have to be Normal.) We conjecture

that the assumptions of Normality can be replaced by a more general class of smooth distributions.

Likewise, we believe that the restriction that the main results hold π-almost surely can be weakened

to holding for any true mean vector inside an open set that has strictly positive prior probability,

under regularity assumptions.
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8 Related literature

We contribute to an interdisciplinary literature on algorithmic fairness that spans computer science,

statistics, economics, law, and operations. For example, Kleinberg et al. (2016) and Chouldechova

(2016) study tensions between different fairness qualities of algorithms. Similarly, Corbett-Davies

et al. (2017) show that ‘fairness constraints’ can be seen to induce the unfair practice of holding

different individuals to different standards. Lakkaraju et al. (2017) and Jiang and Nachum (2020)

study bias coming from label bias in the training data. Liang et al. (2021) characterize the Pareto

frontier between fairness and accuracy in an algorithm design problem. Corbett-Davies and Goel

(2018) review prevalent measures of fairness and discuss their shortcomings, while Kleinberg and

Mullainathan (2019) show that algorithm simplicity can lead to inequities. . A growing set of

questions arising in this literature concern the impact different restrictions on algorithmic inputs

have on the fairness of the resulting decisions (e.g. Barocas and Selbst, 2016; Gillis and Spiess,

2018; Yang and Dobbie, 2020; Hellman, 2020; Fu et al., 2022; Kim, 2022), whether there are legal

restrictions on algorithmic inputs (e.g. Bent, 2019; Gillis, 2022), and the role of the human in

overseeing algorithms (e.g. Enarsson et al., 2022; Huq, 2020). Relative to this literature, we focus

on the question of how the properties of an underlying prediction algorithm affect decisions when

there is a human decision-maker in the loop.

We also relate to work on the interaction of machine predictions and human decisions (as also

review by Lai et al., 2021; Hemmer et al., 2021). Similar to our setup, Bastani et al. (2021) study

how machine learning can improve human decision-making by learning which recommendations

lead to better human decisions in a cooking game. Ibrahim et al. (2021) consider information

flowing from a human to a machine, identifying that a signal by the human related to their private

information is more useful for machine prediction than a human’s direct forecast. Athey et al. (2020)

consider conditions under which it is optimal to allocate decision authority to a human rather than

an algorithm. Raghu et al. (2019) consider the allocation of tasks between algorithms and human

decision-makers, including the role of algorithms in allocating human effort efficiently. Dietvorst

et al. (2018); Stevenson and Doleac (2019); Ludwig and Mullainathan (2021) study frictions in the

adoption of machine predictions (with the latter two specifically examining criminal risk assessment

programs). Boyaci et al. (2022); Snyder et al. (2022) look at how cognitive limitation impacts the

way decision-makers use algorithmic assistance. Grgić-Hlača et al. (2019); Fogliato et al. (2021)

run vignette experiments to analyze the effects of algorithmic advice on judicial decisions. Garrett

and Monahan (2018) review the use of criminal risk assessments in the United States and find

high variance in judge reliance on the tools. De-Arteaga et al. (2020) consider instances in which

humans are able to identify and override incorrect estimates of risk. Grimon and Mills (2022) find

that human decision-makers focus more on information not considered by an algorithm in a setting

where social workers predict child maltreatment, reducing related child hospitalizations as a result.

Lakkaraju and Bastani (2020) look at how black-box algorithms can be explained in multiple ways,
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with different explanations causing different uptake of the algorithms’ predictions. Relative to these

approaches, we specifically focus on the interaction of machine predictions with a biased human

decision-maker.

More specifically, we relate to a literature that explicitly considers fairness properties of machine-

assisted human decisions. Most closely related to our theoretical results, Morgan and Pass (2019)

analyze specific notions of discrimination for a machine-aided human classification decision, and

show that there may be a trade-off between avoiding discrimination in the underlying machine

classification and avoiding discrimination in the human decision, where only trivial cases allow

for avoiding both at the same time. Relative to their approach, we focus on the role of biases in

human beliefs, and our analysis still applies to cases where there are no true differences between

groups. On the experimental side, our work is closely related to that of Green and Chen (2019),

who examine how algorithmic risk assessments impact the performance, evaluation capabilities, and

bias exhibited by human decision-makers in an online experiment. We expand upon this study by

evaluating how changes to the information used by the assistant alter the human’s performance and

bias. Imai et al. (2020) study the effect of providing judges with risk assessment tools in pre-trial

decisions and consider the impacts on the fairness of the resulting decisions. Unlike their work, we

focus on the effect of excluding protected characteristics, rather than the effect of providing advice.

Rambachan et al. (2020) consider regulation of human and algorithmic decision-making, including

in the case where potentially discriminatory human decision-makers employ predictive algorithms.

In contrast, we focus on the interaction of biased beliefs with restrictions on algorithms. Casoria

et al. (2022) run a laboratory hiring experiment to study the impact of (imperfect) group identity

information on discrimination in the decisions made. Agan and Starr (2018) look at the impact

of ‘ban the box’ programs and find that removing voluntary disclosures of past felonies from job

applications increases racial discrimination in who receives callbacks. Relative to these studies, we

ask how similar issues apply in the context of an algorithmic assistant.

The article is also related to an economics literature on fairness and discrimination, which

attempts to identify sources of biased decisions and distinguishes between preference- and belief-

based explanations (Bordalo et al., 2019; Bohren et al., 2019a,b; Coffman et al., 2021; Chan, 2022)

as well interactions that may occur between the two (Eyting, 2022). Prior work provides evidence

of how inaccurate beliefs can lead to biases in observed decisions. Building on this work, our article

considers how information from a machine prediction interacts with inaccurate beliefs.

Finally, we relate to work on the communication of statistical results, the statistics and op-

timization of learning optimal decisions, as well as information design. Related to our approach,

Andrews and Shapiro (2021) model the communication of statistical results to a decision-maker, in

the same way, we model the machine-learning algorithm providing an input to the decision-maker’s

choice. Relative to this work, we focus specifically on the relationship of the inclusion of protected

characteristics to disparities in decisions when beliefs are biased. Biased information systems have
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been shown to be optimal when signaling is restricted to coarse (binary over a continuous space)

signals (Meyer, 1991; Suen, 2004). A related literature on forming optimal decisions from training

data also emphasizes the distinction between prediction and resulting decision (e.g. Bertsimas and

Kallus, 2020). More specifically, Kleinberg et al. (2018b) argue that fairness constraints should

be imposed in the decision, rather than the prediction stage. Canetti et al. (2019); Mishler et al.

(2021) consider whether and how fairness can be achieved through post-processing. Our infor-

mation structure also resembles that of Kamenica and Gentzkow (2011), who demonstrate how

an informed sender with control of information can design a signaling scheme that influences the

behavior of a decision-making receiver with misaligned preferences.

9 Conclusion

In this article, we present a model in which the fairness implications of a machine-assisted human

decision cannot be assessed purely from the mathematical properties of underlying predictions.

Instead, we argue that the nature of decision authority, beliefs, incentives, existing bias, and equi-

libria all shape the fairness of complex decision systems. When analyzing disparities of algorithmic

decisions, this view provides a research agenda towards less discriminatory decisions by designing

processes that consider fairness implications in all aspects of their design. We believe that this

agenda requires bringing together techniques, ideas, scholars, and stakeholders from across fields

and across application areas.
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Appendix

A Solution for the example

In this section we present the calculations necessary for all computations in the example given in

Section 3. Here, we assume that:

◦ Y |G = g ∼ N (µ(g), σ2) is drawn independently with ∆µ = µ(1)− µ(0) and µ̄ = µ(1)+µ(0)
2 .

◦ The decision-maker holds a prior belief π that µ(g) ∼ N (β(g), τ2) independently across g,

with δ = β(1)− β(0) and β̄ = β(1)+β(0)
2 .

◦ P(G = 1) = 1
2 independent of everything else.

◦ The training data is balanced, n(1) = n
2 = n(0).

A.1 A convenient reparametrization

Writing Ȳ1, Ȳ0 for the respective averages, we have that

∆̂ =
Ȳ1 − Ȳ0

2
∼ N (∆µ/2, σ

2/n) µ̂ =
Ȳ1 + Ȳ0

2
∼ N (µ̄, σ2/n),

∆̄ = ∆µ/2 ∼ N (δ/2, τ2/2), µ̄ ∼ N (β̄, τ2/2),

which are all independent. Furthermore, we can write:

f̂+(g) = µ̂+ (2g − 1)∆̂ f̂− = µ̂ µ(g) = µ̄+ (2g − 1)∆̄

A.2 Human decisions

We update as:

d0(g) = Eπ[µ(g)] = β(g) = β̄ +
2g − 1

2
δ

d̂+(g) = Eπ[µ(g)|f̂+(g)] =
nτ2Ȳg + 2σ2β(g)

nτ2 + 2σ2
=

nτ2µ̂+ 2σ2β̄

nτ2 + 2σ2
+

2g − 1

2

nτ22∆̂ + 2σ2δ

nτ2 + 2σ2

d̂−(g) = Eπ[µ(g)|f̂−] = Eπ[µ̄|µ̂] + (2g − 1)Eπ[∆̄|µ̂] = nτ2µ̂+ 2σ2β̄

nτ2 + 2σ2
+

2g − 1

2
δ
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A.3 Biases and variances

By independence, we can calculate biases and variances (given the true values of µ̄, ∆̄) separately

by average and disparity to find:

E[d0(g)]− µ(g) = (β̄ − µ̄) +
2g − 1

2
(δ − 2∆̄) Var(d0(g)) = 0

E[d̂+(g)]− µ(g) =
2σ2(β̄ − µ̄)

nτ2 + 2σ2
+

2g − 1

2

2σ2(δ − 2∆̄)

nτ2 + 2σ2
Var(d̂+(g)) =

2nτ4σ2

(nτ2 + 2σ2)2

E[d̂−(g)]− µ(g) =
2σ2(β̄ − µ̄)

nτ2 + 2σ2
+

2g − 1

2
(δ − 2∆̄) Var(d̂−(g)) =

nτ4σ2

(nτ2 + 2σ2)2

The results in Table 1 follow, noting that E
[
2G−1

2

]
= 0,Var

(
2G−1

2

)
= 1

4 :

d̂ E[∆d̂] E[rd̂] = E[E2[d̂(G)− µ(G)|G] + Var(d̂(G)|G)] + σ2

f̂− 0
∆2

µ

4 + σ2
(
1 + 1

n

)
f̂+ ∆µ σ2

(
1 + 2

n

)
d0 δ (µ̄−β̄)2 +

(∆µ−δ)2

4 + σ2

d̂− δ σ4(µ̄−β̄)2

(σ2+n
2
τ2)2

+
(∆µ−δ)2

4 + σ2
(
1 + nτ4

4(σ2+n
2
τ2)2

)
d̂+

σ2δ+n
2
τ2∆µ

σ2+n
2
τ2

σ4

(
(µ̄−β̄)2+

(∆µ−δ)2

4

)
(σ2+n

2
τ2)

2 + σ2
(
1 + nτ4

2(σ2+n
2
τ2)2

)
A.4 Proofs of the remarks in the example section

Remark 1 (Disparity reversal in the example). If the human decision-maker ex-ante believes that

the disparity is larger than it actually is, δ > ∆µ ≥ 0, then

∆d̂−
= ∆d0 = δ > E[∆d̂+

],

while for the underlying predictions ∆f̂−
= 0 ≤ E[∆f̂+

].

Proof of Remark 1. Immediate from the explicit calculations, where we note that E[∆d̂+
] is a convex

combination of δ and ∆µ.

Remark 2 (Trade-off reversal in the example). For ξ = 2σ√
n
and δ > ∆µ +

2τσ√
nτ2+4σ2

, we find that:

1. Trade-off regime. If ∆µ > ξ then there is a disparity–accuracy trade-off for automation,

|∆f̂+
(x)| > |∆f̂−

(x)| a.s., E[rf̂+ ] < E[rf̂− ],
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which disappears for assistance,

∆d̂+
(x) < E[∆d̂−

(x)], E[rd̂+ ] < E[rd̂− ].

2. Dominance regime. If 0 ≤ ∆µ < ξ then there is no trade-off for either decision, and

|∆f̂+
(x)| > |∆f̂−

(x)| a.s., E[rf̂+ ] > E[rf̂− ],

∆d̂+
(x) < E[∆d̂−

(x)], E[rd̂+ ] < E[rd̂− ].

Proof of Remark 2. The results for automation are immediate from the explicit expressions above.

For assistance we note that risks are equal for(
1− σ4(

σ2 + n
2 τ

2
)2
)

(∆µ − δ)2

4
=

nσ2τ4

4
(
σ2 + n

2 τ
2
)2

⇐⇒
(
nτ2σ2 + n2τ4/4

)
(∆µ − δ)2 = nσ2τ4

⇐⇒ (∆µ − δ)2 =
4σ2τ2

4σ2 + nτ2
,

yielding the threshold for δ.

B Proofs of main results

Remark 3 (Trade-off vs dominance regimes for machine decisions). For every x and sample sizes

n(x, 1), n(x, 0) > 0 there exists an ξ > 0 such that:

1. Trade-off regime. If |∆µ(x)| > ξ, then∣∣∣∆f̂+
(x)
∣∣∣ > |∆f̂−

(x)| a.s., E[rf̂+(x)] < E[rf̂−(x)].

2. Dominance regime. If |∆µ(x)| < ξ, then∣∣∣∆f̂+
(x)
∣∣∣ > |∆f̂−

(x)| a.s., E[rf̂+(x)] > E[rf̂−(x)].

Proof. The statements about disparities are immediate from positive variance and ∆f̂−
= 0. Since
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we assume a constant variance σ2, the statement about risks holds by

E[rf̂+(x)] = E

[
σ2

n(x,G)

]
+ σ2

E[rf̂−(x)] = E

[(
n(x, 1−G)

n(x, 1) + n(x, 0)
∆µ

)2
]
+

σ2

n(x, 1) + n(x, 0)
+ σ2,

where we note that E[rf̂+(x)]−E[rf̂−(x)] is symmetrical in ∆µ around zero and strictly decreasing

in |∆µ|, positive at ∆µ = 0, and negative as |∆µ| → ∞. Hence there exists such ξ.

Theorem 1 (Disparity reversal). Assume that the decision-maker has δ-disparate beliefs, that the

regularity conditions hold, and that 0 ≤ ∆µ(x) < δ. Then π-almost surely for every η > 0 there

exists some N such that with probability (over draws of the training data) at least 1− η we have

∆d̂+
(x) < δ ≤ ∆d̂−

(x),∆d0(x)

whenever n(x, 1), n(x, 0) ≥ N .

Proof. By δ-disparate beliefs and for Ȳg =

∑
Xi=x,Gi=g Yi∑
Xi=x,Gi=g 1 , Ȳ =

∑
Xi=x Yi∑
Xi=x 1 , ε̄ =

∑
Xi=x εi∑
Xi=x 1 (where

εi = Yi − µ(x, g)),

∆d̂−
= Eπ[µ(1)|Ȳ ]− Eπ[µ(0)|Ȳ ] = Eπ

[
µ(1)− µ(0)

∣∣Ȳ ]
= Eπ [µ(1)− µ(0)|µ̄+ ε̄] = Eπ [Eπ [µ(1)− µ(0)|µ̄, ε̄]|µ̄+ ε̄]

= Eπ[Eπ [µ(1)− µ(0)|µ̄]︸ ︷︷ ︸
≥δ

|µ̄+ ε̄] ≥ δ

almost surely, where we have used that the εi do not vary with Gi and are not informative about

the µ(x, g). Similarly, ∆d̂−
= Eπ [µ(1)− µ(0)] = Eπ [Eπ [µ(1)− µ(0)|µ̄]] ≥ δ. At the same time,

d̂+(x, g) = Eπ[µ(x, g)|Ȳg] = Eπ[µ(x, g)|{Yi;Gi = g,Xi = x}] p→ µ(x, g)

as n(x, g) → ∞ π-almost surely by Doob’s posterior consistency theorem (e.g. Miller, 2018, Theorem

2.2) where we have used that Ȳg is a sufficient statistic for {Yi;Gi = g,Xi = x}. In particular,

∆d̂+
(x) = d̂+(x, 1)− d̂+(x, 0)

p→ ∆µ(x) < δ

as min(n(x, 1), n(x, 0)) → ∞. The result follows.

Corollary 1 (Disparity reordering). Under the conditions of Theorem 1 with ∆µ(x) ≥ 0, with
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probability at least 1− η

|∆d̂−
(x)|

|∆d̂0
(x)|

}
>

{
|∆d̂+

(x)|
|∆f̂+

(x)|

}
> |∆f̂−

(x)|.

Proof of Corollary 1. The result follows as in the two previous proofs and

∆f̂+
(x, g) = f̂+(x, 1)− f̂+(x, 0)

p→ ∆µ(x), ∆f̂−
(x, g) ≡ 0.

Theorem 2 (Trade-off reversal). Assume that the decision-maker has δ-disparate beliefs, that the

regularity conditions hold, and that 0 < ∆µ(x) < δ. Then π-almost surely for every η > 0 and

ζ ∈
(
0, 12
]
there exists some M such that with probability (over draws of the training data) at least

1− η we have that

∆d̂+
(x) < ∆d̂−

(x) and rd̂+(x) < rd̂−(x)

while

∆f̂+
(x) > ∆f̂−

(x) and r0
f̂+
(x, g) < r0

f̂−
(x, g) for g ∈ {0, 1}

whenever ζ ≤ n(x,0)
n(x,0)+n(x,1) ,

n(x,1)
n(x,0)+n(x,1) ≤ 1− ζ and n(x, 0) + n(x, 1) ≥ M.

Proof of Theorem 2. Since π-almost surely

d̂+(x, g)
p→ µ(x, g) d̂−(x, 1)− d̂−(x, 0) ≥ δ

as n(x, g) → ∞, by continuous mapping we have that

rd̂+(x)
p→ σ2 rd̂−(x) ≥ P(G = 1)P(G = 0)(∆µ − δ)2 + σ2 > σ2.

For automation, for all ϵ > 0

f̂+(x, g)
p→ µ(x, g), P(|f̂−(x, g)− µ(x, g)| ≥ ζ∆µ − ϵ) → 1,

so

r0
f̂+
(x, g)

p→ σ2, r0
f̂−
(x, g) ≥ ζ2(∆µ − ϵ)2 + σ2 > σ2

for ϵ sufficiently small.
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